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THE TRAVELING THIEF PROBLEM (TTP)

Goal: Visit each city exactly once, maximising the total profit ” such
that the total weight does not exceed the knapsack capacity 1//,
where 7 is defined as:

where depending on whether the item i is picked {1} or
not {0}, and is defined as:
where 11; is the city at tour position i in tour I1, and is the

current weight of the knapsack at city



The Bi-Objective TTP

a natural extension:

maximise the reward for a given weight of collected
items, or determine the least weight subject to
bounds imposed on the reward

* Objective one: profit P as defined before
* Objective two: total accumulated weight



Packing-While-Travelling (PWT)



Definition 3.1. Let 7, be a corresponding objective vector for

P,. Then 7, represents the related Pareto front designated as a DP
front for the given tour .
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(the “natural” approach would be the following)
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IS Mean

TSP tour as a starting point. What does thi

* Many single-objective TTP heuristics take a good
here?

Solving the Bi-Obj. TTP
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Algorithm 1 Hybrid IBEA Approach

Input: population size y; limit on the number of generations «;
Initialisation:

set the iteration counter ¢ = 0;
populate IT with y new tours produced by the TSP solver;
while (¢ < a) do

setc=c+1;

Indicator:

run the DP for every tour 7z € II to compute its DP front 7, ;

apply indicator function 7 (7, ) to calculate the indicator value for
every individual tour 7 € II;

Survivor Selection:

repeatedly remove the individual with the smallest indicator value
from the population IT until the population size is y (ties are broken
randomly);

Parent Selection:

apply parent selection procedure to IT according to the indicator
values to choose a set A of A parent individuals;

Mating:

apply crossover and mutation operators to the parents of A to obtain
a child population A’;

set the new population as IT = TT U A/;
end while




Indicators

Def 3.2: Given g different DP fronts, let ¢ denote a set of
possible unique solution points derived by 7;.. 7,. Then w
Is a Pareto front formed by the points ofc% and w is
named as the surface of .

Given a tour 7, and its corresponding solution set T,:

» Surface Contribution: number of objective vectors
contributed by T,

* Hypervolume: volume covered by T, w.r.t (0,C)

e Loss of Contribution: LSC(rz) =1-SC(® \ T)
HV(®\ Ty)
LHV (t;)=1-

HV (D)




Parent Selection Mechanisms

* Rank-Based Selection (RBS), Fitness-Proportionate
Selection (FPS), Tournament Selection (TS),
Arbitrary Selection (AS), Uniformly-at-Random
Selection (UAR)

Crossover and Mutation Operators

* TSP-only: multi-point crossover, 2-opt mutation,
jump



Experimental Study

* 2 indicators X 8 parent selection strategies

 TTP instances from the classes eil51, eil76, eil101;
three knapsack types

Assessment

* 30 repetitions, Welch’s t-test with UAR as a
baseline (like the Student's t-test, but more reliable
when the two samples have unequal variances and
unequal sample sizes)
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Comparison of bi-obj.
approaches with single-
objective MA2B

MAZ2B by El Yafrani and Ahiod [GECCO’16]

Fitness-Proportionate Selection
Loss of Hypervolume
Loss of Surface Contribution

MAZ2B

Mean Max SD
eil51_n50 Uncorrelated 2805.000 2855 27.814
SimilarWeights | 1416.348 1460 47.906
Bounded 4057.652 4105 25.841
eil76_n75 Uncorrelated 5275.067 5423 78.138
SimilarWeightS 1398.867 1502 55.448
Bounded 3849.067 4109 139.742
eil101_ n100 Uncorrelated 3339.600 3789 388.360
SimilarWeightS 2215.500 2483 235.905
Bounded 4949.000 5137 139.285
FPS LHV
Mean Max SD
eil51_n50 Uncorrelated 2828.728 2854.543 15.357
SimilarWeightS 1413.044 1459.953 17.780
Bounded 4229.149 4230.997 10.118
eil76_n75 Uncorrelated 5445.624 5514.666 58.992
SimilarWeights | 1477.680 1513.404 24.494
Bounded 4042.449 4108.760 38.805
eil101_n100 Uncorrelated 3620.844 3943425 222.815
SimilarWeights | 2431.907 2482.462 52.265
Bounded 5094.246 5233.513 65.267
FPS LSC
Mean Max SD
eil51_n50 Uncorrelated 2810.509 2832.496 18.076
SimilarWeights | 1426.135 1459.953 21.990
Bounded 4231.299 4241.199 1.881
eil76_n75 Uncorrelated 5392.575 5514.666 73.029
SimilarWeights | 1474.803 1513.404 21.346
Bounded 4054.815 4102.167 21.440
eil101 n100 Uncorrelated 3664.369 3846.172 124.994
SimilarWeights | 2436.374 2482.462 49.731
Bounded 5067.070 5233.513 55.587




Summary

* Bi-Objective TTP: profit vs. weight

* Dynamic programming provides provably optimal
trade-off fronts for a given tour

* Indicator-based EA with a population of tours: with

”loss of surface contribution” and “loss of
hypervolume”

* Best bi-objective approaches beat single-objective
state-of-the-art



