Evolutionary Computation plus Dynamic Programming for the Bi-Objective Travelling Thief Problem

Junhua Wu, Sergey Polyakovskiy, Markus Wagner, Frank Neumann Frank.Neumann@Adelaide.edu.au

Project page: https://cs.adelaide.edu.au/~optlog/research/ttp.php Or google "travelling thief Adelaide"

Tuesday, July 17, 10:40-12:20, Conference Room D (3F)

The Travelling Thief Problem (TTP)

Composed of the merging of the Traveling Salesman Problem and the Knapsack Problem

The Travelling Thief Problem (TTP)

Composed of the merging of the Traveling Salesman Problem and the Knapsack Problem

The Travelling Thief Problem (TTP)

Composed of the merging of the Traveling Salesman Problem and the Knapsack Problem

The Travelling Thief Problem (TTP)

Composed of the merging of the Traveling Salesman Problem and the Knapsack Problem

THE TRAVELING THIEF PROBLEM (TTP)

Goal: Visit each city exactly once, maximising the total profit P such that the total weight does not exceed the knapsack capacity W, where P is defined as:

$$
P=\sum_{i=1}^{m} p_{i} x_{i}-R \sum_{i=1}^{n} t_{i, i+1}
$$

where $x_{i}=\{1 \mid 0\}$ depending on whether the item i is picked $\{1\}$ or not $\{0\}$, and $t_{i, j}$ is defined as:

$$
t_{i, j}=\frac{d\left(\Pi_{i}, \Pi_{j}\right)}{v_{\max }-W_{\Pi_{i}}\left(\frac{v_{\max }-v_{\min }}{W}\right)}
$$

where Π_{i} is the city at tour position i in tour Π, and $W_{\Pi_{i}}$ is the current weight of the knapsack at city Π_{i}.

The Bi-Objective TTP

a natural extension: maximise the reward for a given weight of collected items, or determine the least weight subject to bounds imposed on the reward

- Objective one: profit P as defined before
- Objective two: total accumulated weight

Packing-While-Travelling (PWT)

Definition 3.1. Let τ_{π} be a corresponding objective vector for \bar{P}_{π}. Then τ_{π} represents the related Pareto front designated as a $D P$ front for the given tour π.

(the "natural" approach would be the following)

Solving the Bi-Obj. TTP

- Many single-objective TTP heuristics take a good TSP tour as a starting point. What does this mean here?
- TSP solvers; CONCORDE (CON), ACO, LKH and LKH2

eil76_n75_uncorr_01.ttp, inver over

Algorithm 1 Hybrid IBEA Approach

Input: population size μ; limit on the number of generations α;
Initialisation:
set the iteration counter $c=0$;
populate $\bar{\Pi}$ with μ new tours produced by the TSP solver;
while $(c \leq \alpha)$ do
set $c=c+1$;

Indicator:

run the DP for every tour $\pi \in \bar{\Pi}$ to compute its DP front τ_{π};
apply indicator function $\mathcal{I}\left(\tau_{\pi}\right)$ to calculate the indicator value for every individual tour $\pi \in \bar{\Pi}$;

Survivor Selection:

repeatedly remove the individual with the smallest indicator value from the population $\bar{\Pi}$ until the population size is μ (ties are broken randomly);

Parent Selection:

apply parent selection procedure to $\bar{\Pi}$ according to the indicator values to choose a set Λ of λ parent individuals;

Mating:

apply crossover and mutation operators to the parents of Λ to obtain a child population Λ^{\prime};
set the new population as $\bar{\Pi}=\bar{\Pi} \cup \Lambda^{\prime}$;
end while

Indicators

Def 3.2: Given q different DP fronts, let ϕ denote a set of possible unique solution points derived by $\tau_{1} . . \tau_{g}$. Then ω is a Pareto front formed by the points of ϕ and $\underline{\omega}$ is named as the surface of ϕ.

Given a tour τ_{π}, and its corresponding solution set T_{π} :

- Surface Contribution: number of objective vectors contributed by T_{π}
- Hypervolume: volume covered by T_{π} w.r.t ($0, \mathrm{C}$)
- Loss of Contribution: $\quad L S C\left(\tau_{\pi}\right)=1-S C\left(\Phi \backslash T_{\pi}\right)$

$$
\operatorname{LHV}\left(\tau_{\pi}\right)=1-\frac{H V\left(\Phi \backslash T_{\pi}\right)}{H V(\Phi)}
$$

Parent Selection Mechanisms

- Rank-Based Selection (RBS), Fitness-Proportionate Selection (FPS), Tournament Selection (TS), Arbitrary Selection (AS), Uniformly-at-Random Selection (UAR)

Crossover and Mutation Operators

- TSP-only: multi-point crossover, 2-opt mutation, jump

Experimental Study

- 2 indicators X 8 parent selection strategies
- TTP instances from the classes eil51, eil76, eil101; three knapsack types

Assessment

- 30 repetitions, Welch's t-test with UAR as a baseline (like the Student's t-test, but more reliable when the two samples have unequal variances and unequal sample sizes)

Comparison of bi-obj. approaches with singleobjective MA2B

MA2B				
eil51_n50		Mean	Max	SD
	Uncorrelated	2805.000	2855	27.814
	SimilarWeights	1416.348	1460	47.906
eil76_n75	Bounded	4057.652	4105	25.841
	Uncorrelated	5275.067	5423	78.138
	SimilarWeights	1398.867	1502	55.448
eil101_n100	Bounded	3849.067	4109	139.742
	Uncorrelated	3339.600	3789	388.360
	SimilarWeights	2215.500	2483	235.905
	Bounded	4949.000	5137	139.285
FPS LHV				
eil51_n50	Uncorrelated SimilarWeights Bounded	Mean	Max	SD
		2828.728	2854.543	15.357
		1413.044	1459.953	17.780
eil76_n75		4229.149	4230.997	10.118
	Uncorrelated	5445.624	5514.666	58.992
	SimilarWeights	1477.680	1513.404	24.494
eil101_n100	Bounded	4042.449	4108.760	38.805
	Uncorrelated	3620.844	3943.425	222.815
	SimilarWeights	2431.907	2482.462	52.265
	Bounded	5094.246	5233.513	65.267
FPS LSC				
eil51_n50	Uncorrelated SimilarWeights	Mean	Max	SD
		2810.509	2832.496	18.076
		1426.135	1459.953	21.990
eil76_n75	Bounded	4231.299	4241.199	1.881
	Uncorrelated	5392.575	5514.666	73.029
	SimilarWeights	1474.803	1513.404	21.346
eil101_n100	Bounded	4054.815	4102.167	21.440
	Uncorrelated	3664.369	3846.172	124.994
	SimilarWeights	2436.374	2482.462	49.731
	Bounded	5067.070	5233.513	55.587

MA2B by El Yafrani and Ahiod [GECCÓ16]

Fitness-Proportionate Selection Loss of Hypervolume Loss of Surface Contribution

Summary

- Bi-Objective TTP: profit vs. weight
- Dynamic programming provides provably optimal trade-off fronts for a given tour
- Indicator-based EA with a population of tours: with "loss of surface contribution" and "loss of hypervolume"
- Best bi-objective approaches beat single-objective state-of-the-art

