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Abstract— We examine the problem of partitioning a square
into convex polygons which are as circular as possible. Circular
means that the polygon’s aspect ratio is supposed to be near
1. The aspect ration of a convex polygon denotes the ratio of
the diameters of the smallest circumscribing circle to the largest
inscribed disk. This problem has been solved for the equilateral
triangle as well as for regular k-gon with k > 4. In the case
of a square, the optimal solution is still an open problem. We
are planning to find a solution which is ”good enough” with
the help of evolutionary algorithms.

I. INTRODUCTION

The aspect ratio γ of a polygon is the ratio of the

diameters of the smallest circumscribing circle to the largest

inscribed circle. Since the aspect ratio is a measurement for

the circularity, a polygon with a small aspect ratio is also

called fat ([Dam04],[vdSO94]). When speaking of the aspect

ratio of a partition, we mean the maximal aspect ratio of the

partition’s pieces. One of the open problems presented at the

14th Canadian Conference on Computational Geometry was

to find a partition of a given polygon, which is as circular

as possible, i.e., a partition with a minimal aspect ratio.

We are interested in a certain restriction of this problem:

we consider regular polygons and partitions consisting of

convex polygons allowing Steiner points, i.e., the pieces of

the partition are allowed to have vertices which are not

vertices of the original polygon. For regular k-gons with

k > 4 it is known ([DIO03]) that the one-piece partition

already has the smallest aspect ratio. Further the equilateral

triangle has been closely investigated and it has been shown

that the most circular partition consists of infinitely many

pieces, but it can be approached up to any precision by a

finite partition. However the square is still an open problem.

It is known that the one-piece partition is not optimal for

the square. In [DIO03] it is shown that the most circular

partition of the square has an aspect ratio in the range

[1.28868, 1.29950]. Figure 1 shows the best solution found

so far with γ = 1.29950, and the value 1.28868 marks the

mathematically derived lower bound.

Partitionings of polygons into pieces have been closely

investigated in research ([Kei00], [Ber97]). Allowing Steiner

points increases the complexity of this problem. In [CD85]

Fig. 1. Best solution found so far in [DIO03], γ = 1.29950.

a polynomial-time algorithm is introduced for partitioning a

polygon into the fewest number of convex pieces.

Collision detection tests are important in motion planning,

dynamics simulations as well as virtual reality. It is a known

fact ([vdSO94]) that collision detection tests perform notably

good on circular polygons since these polygons can be tightly

circumscribed by a circle. Further applications for which

circular polygons are desirable are ray tracing ([FDFH96]),

range searching ([OvdS94]) and simulation of physically-

based motion ([HKM96]).

A. Notation

A partition of a polygon P is a division into non-

overlapping polygonal pieces P1, P2, . . . that cover all of

P. We will use γ1(P ) for the aspect ratio of the one-piece:

the ratio of the radius of the smallest circumcircle of P, to

the radius of the largest disk inscribed in P. γ(P ) is the

maximum of all the γ1(Pi) for all pieces Pi in a partition of

P.

B. Outline

In the following we present an evolutionary algorithm

to compute a circular partition of a square. To the best



of our knowledge this problem has not been approached

using evolutionary algorithms before. In the next section we

give information on the representation of individuals, the

fitness function and the selection scheme adopted. Further

we introduce three operators we used. Section 3 presents

accomplished experiments with results and in the last section

we discuss future work.

II. EVOLUTIONARY ALGORITHMS TO COMPUTE A

CIRCULAR PARTITION OF A SQUARE

The application of an evolutionary algorithm to a numeri-

cal optimization problem is a very common approach. Evolv-

ing high-level structures, such as communication networks

or time-tables, have been subject to recent studies as well

([MS06], [Fil92]). In order to find a partition of a polygon,

an efficient floating-point optimization on the lower level has

to be combined with a goal-driven partitioning mechanism

on the higher level.

Our research was motivated by open problems that have

been solved only partially by conventional analytical meth-

ods. For example, the problem of finding longest snakes in

hypercubes was posed by [Kau58] and is solved for very few

dimensions only. While in the lower dimensions conventional

analytical methods were sufficient, the application of evolu-

tionary algorithms to this problem has become successful in

finding new lower bounds for higher dimensions ([CP05],

[DGH06]).

For the problem at hand, we propose an evolutionary

algorithm based on ideas taken from the field of genetic

algorithms ([Hol75]) and evolution strategies ([Rec73]). The

parameter settings were loosely based upon suggestions by

[Gol89].

A. Individual Representation, Fitness Function and Selection

1) Individual Representation: Finding an adequate repre-

sentation proved to be a crucial step in the development of

the entire evolutionary algorithm. A structure had to be found

that fulfilled several requirements:

• It must be capable of representing unambiguous valid

partitions,

• it should allow the construction of complex evolutionary

operators,

• it should support arbitrary numbers of vertices, edges

and polygons per partition.

Based on the evaluation of the scenario, we chose an

object-oriented approach, which is drafted in Figure 2. In the

figure, a vector denotes a list-like data-structure that contains

arbitrary objects. An individual (i.e. a partition) is composed

of an arbitrary number of polygons. A single polygon is

composed of an arbitrary number of edges, which are defined

by two vertices. Furthermore, a vertex has references to all

the edges it belongs to. The same applies to the edges,

which have information about the polygons they belong to.

While most edges belong to two polygons, an edge that

belongs to the very border of the outer square belongs to only

Fig. 2. Schematic of an individual’s general structure.

one polygon. This overall top-down method allows for easy

navigation in the partition, for example for finding adjacent

polygons of a given vertex.

2) Fitness Function: The problem can be regarded to be

multi-objective, since the optimal solution is likely to be

symmetric. Thus, not only the polygons have to be as circular

as possible, but also symmetry is desirable. The following

two fitness functions were alternated every 20 generations:

f1(P ) = maximum(γ1(Pi)) (1)

f2(P ) = mean(γ1(Pi)) (2)

P is the partition and the Pis are the pieces of the partition.

f1 evaluates the quality of a partition by concentrating solely

on the least circular polygon. This produces a higher pressure

to improve the worst polygon of the current partition. f2

left some room to optimize other polygons and to introduce

symmetry. Polygons that were more circular than the worst

polygon could be optimized as well, creating “room” for the

following 20 generations when f1 would be used again.

3) Selection Mechanisms: The individuals for the appli-

cation of the variation operators (see Section II.B) were

selected using tournament selection, with a tournament size

of two individuals and an uncertainty of 90%. This means

that the fitter individual out of two randomly drawn ones was

chosen with a probability of 90%, leaving a probability of

10% to preserve diversity within the population and possibly

prevent early convergence on a local optimum.

Based on the initial µ individuals, a number of λ = 7 ∗ µ

individuals per generation was created and their fitnesses

calculated. Then, the best µ individuals were chosen deter-

ministically from the union of parents and offspring.

B. Variation Operators

1) Push Operator: In order to modify the coordinates

of a single vertex at a time, two different approaches were

taken. For the first approach, the Gaussian perturbation by



Fig. 3. Example of an application of the push operator, using other vertices as a heuristic. The right figure shows details of the mutated partition.

[BFM00] was adapted. This mutation operator for floating-

point numbers is based on a Gaussian distribution, whose

mean is the current value of a coordinate and the standard

deviation σ. In a process of self-adaption, the value of σ is

adapted every k generations, based on the 1/5 success rule

[Rec73]. This allows for mutation to use a wider search space

when mutation is successful. In the other case, the standard

deviation is decreased to concentrate the search more around

the current solution.

The second approach for adjusting the position of a vertex

implicitly introduced symmetry by taking similar vertices

into account. The idea is that the basic square can be divided

into eight triangles. The triangles cover parts of the partition

that can be transformed into one another by reflections1–

taking an acceptable degree of precision into account. The

application is demonstrated in Figure 3. Vorig is the vertex

to be mutated and belongs to the least circular polygon of

the individual. Vertices V1 . . . V7 are considered similar to

Vorig , and V6 is randomly chosen to serve as a heuristic.

Subsequently, V ′

orig is set on a point between V ′

orig and the

transformed vertex V ′

6 . In the case that Vorig would always

be set to the transformed vertex, the partition would quickly

be highly symmetrical. However, it is likely that it would

loose good partial solutions for the entire partition of the

square.

2) Tile Operator: The second operator adds vertices to a

polygon P . First we choose a polygon P ′ which is adjacent

to P and whose number of vertices n is not a prime number.

Let p be the smallest prime factor of n. In the next step we

mark the mutual edge of P and P ′ and starting from this

edge we mark every p-th edge of P ′. Let M be the center of

the largest inscribed circle of P ′ and Ei be the center of the

i-th marked edge in P ′. We now construct subsidiary lines

from each Ei to M . In Figure 4 on the left side, those lines

1Theoretically, this idea could have been exploited in the representation
design, giving us the phenotype’s symmetry “for free”. The downside is that
the application of the variation operators to elements on/near the triangles
borders would have been algorithmically extremely complicated.

are depicted as dashed lines within P ′. In the next step a

new vertex Vi on each subsidiary line is constructed.

We now change all polygons whose mutual edge to P ′

has been marked by adding the respective vertex Vi to

those polygons. Since P is one of those polygons, P gets

a new vertex. Further we remove polygon P ′ and add n
p

new polygons. The right part of 4 shows the result. So the

tile operator adds one vertex to n
p

polygons, removes one

polygon and creates n
p

new polygons each having n+(p−2)
vertices.

Since the newly created polygons are supposed to be as

circular as possible, it is important to start the tile operator

by marking edges in P ′, which are uniformly distributed.

This can be best achieved by choosing p to be a divider of n.

This explains, why n is not allowed to be a prime number. In

addition to the uniform distribution of marked edges it is also

desirable only to have a small number of consecutive edges

which are not marked. Having many consecutive edges which

are not marked is likely to result in the creation of longish

polygons with a high aspect ratio. Therefore we decided to

use the smallest prime factor of n as p.

3) Star Operator: During the evolution process it is

possible that a concave piece occurs in the partition. If many

other pieces in this partition have a very small aspect ratio,

it is not desirable to discard the whole individual. Therefore

we developed an operator which allows to repair such an

partition. However this operator can not handle all kinds of

concave polygons. It can only be used to get rid of benign

concave polygons. We call a concave polygon with vertices

P1, P2, . . ., Pn benign concave, if no segment from Pi to

the center of the largest inscribed circle subtends one of the

polygons edges.

Let P be a benign concave polygon with vertices P1, P2,

. . ., Pn occurring in a partition and M be the center of its

largest inscribed circle. Further with Ei we denote the center

of the i-th edge. In the first step, subsidiary lines from each

Ei to M and from each Pi to M are constructed. Next, new

vertices are created: on each subsidiary line connecting Pi



Fig. 4. First steps of an application of the tile operator on the left, result on the right.

Fig. 6. Result of the star operator.

and M a new vertex P ′

i and on each subsidiary line from

Ei to M a new vertex Vi is created. The exact position of a

vertex P ′

i complies with the length of P ’s edges containing

Pi. Further the position of Vi is determined by the positions

of P ′

i and P ′

i+1. The left side of Figure 5 depicts P , the new

vertices as well as the subsidiary lines.

In the next step the new vertices are connected, creating

a concave star-shaped polygon in the middle of the original

polygon. Further we create n new pentagons around the star-

shaped polygon. The result is depicted on the right side of

Figure 5, where one of the new pentagons is shaded.

In the next step, on each segment Vi M a new vertex V ′

i is

created. Those new vertices are connected creating an n-gon

in the middle. Further we also use the new vertices to create

n new pentagons, one in each pinnacles of the star shaped

polygon. Figure ?? depicts the result.

4) Crossover Operator: The definition of an applicable

crossover operator was not possible. An analysis of the

general approach lead to the problem of inevitably leaving

the valid search space. Even in the case of the combination

of two good individuals, additional vertices might have to

be introduced, which would lead to concave polygons and

invalid solutions. In general, the matching and mating of

graphs is another difficult problem–even without taking a

degree of impression into account. We tried to compensate

the lack of an explicit crossover operator by the introduction

of the push operator that has already been defined in this

section.

C. Initial Population

To improve upon the one-piece partition of the square,

polygons with at least five vertices must be used, because the

square itself is the most circular tetragon with γ = 1.4142.

Covering the sides of the square is challenging and crucial to

the structure of the overall partition. Therefore, we chose to

use different classes of seeds that were constructed manually,

each class having different characteristics regarding the sides

of the square. Figure 7 shows two examples that both have

near-optimal polygons on the sides. Their central polygons

are concave and have to be partitioned into convex polygons

by the variation operators in order to follow the problem

given.

III. EXPERIMENTAL RESULTS

We split up the experiments into sets of short runs and long

runs. In the first set, the effect of the introduced operators

was studied. For the long runs, the experiments were not a

priori limited in run-time in order to eventually come up with

a new lower bound for the problem.

Considering the parameter settings, the push operator was

used for 1 to 5 vertices at a time, with a rate of 0.2. There

was a 50:50 chance of either mutating an arbitrary vertex

or one of the vertexes that belonged to the least circular

polygon. The initial standard deviation of a vertex was set



Fig. 5. First step of an application of the star operator on the left side, second step on the right side.

Fig. 7. Examples for complex seeds used in the initial population of the long run experiments.

to σ = 0.02. The tile and star operators were checked for

applicability at rates of 0.1 each.

A. Short run experiments

For the evaluation of the mutation operators, the evolu-

tionary algorithm was tested with three different setups:

• EA1: basic setup, with the mutation of a single vertex

being limited to a predefined interval,

• EA2: same as EA1, with the Gaussian perturbation

being used by the mutation of a single vertex,

• EA3: same as EA2, using the implicit introduction of

symmetry.

Figure 8 shows an example for an individual that was

used as a seed. The other seeds follow that general structure,

having pentagons in the corners of the square, tetragons in

between, and an octagon in the center.

Each setup was repeated 30 times, with a population size

µ = 10. Evolution was stopped after 2000 generations, which

is equivalent to 140,000 evaluations. Figure 10 shows the

average fitnesses–averaged over the individual runs–for the

setups EA1 to EA3.

The best individual found during our first series of tests

is shown in Figure 9. It’s fitness of γ = 1.3405 was found

by EA3 that used both the Gaussian perturbation and the

operator for the implicit introduction of symmetry. Regarding

the average performance as well as the best solutions, the

setup EA3 outperformed the setups EA1 and EA2, whose

best individuals found had fitnesses of γEA1
= 1.3419 resp.

γEA2
= 1.3427. To our knowledge, the best partition with a

structure similar to Figure 9, has a fitness of γ = 1.3396 is

optimal.

B. Long run experiments

For the long runs, we used several approaches to seed

the population. We used seeds that follow the structure of

Figure 8, as well as seeds similar to Figure 1 and intermediate

partitions. Figure 1 has a fitness of γ = 1.2995, which is the

established lower bound by [DIO03]. It features a total of 185



Fig. 8. Example of an initial partition of the short run experiments, γ =

1.6699.

Fig. 9. Best solution found by the short run experiments, γ = 1.3405.

Fig. 10. Comparison of different setups for the push operator.

Fig. 11. Complex individual, γ = 1.425. The largest inscribed disks were
highlighted to demonstrate that the problem is not the coverage of the square
with circles, but the partitioning into pieces with a specific property.

vertices, 96 edges and 92 polygons. Starting with this seed

left the evolutionary algorithm with 185 ∗ 2 = 370 floating-

point parameters per individual to optimize. Furthermore, the

structure of the partition is represented by the edge- and

polygon-relations over the vertices, making an individual

an immensely complex combination of a large number of

floating-point parameters and relations between these.

Figure 11 shows an example of an individual where the

star operator has been applied to several times. It is important

to note that the higher value for γ is not the result of the

large uncovered areas around the central circle. The problem

lies in the tight packing of circular polygons in the rings.

No improvement over the results of the short runs have been

made, using the more complex seeds.

C. Discussion

Even though we used sophisticated operators, our experi-

ments did not result in a partition with a γ value lower than

the one of the best partition introduced in [DIO03]. There

are several reasons for this: The seeding we used forces the

individuals to develop in a certain way and therefore huge

parts of the search space remain unexplored. The individuals

get stuck in areas of local minima and it turns out that it is

not trivial to leave them. The long run experiments imply that

using more complex seeds does not solve this problem. One

possibility to leave a local minima would be an operator,

which could be used to insert points by splitting edges.

However this leads almost inevitably to concave polygons,

and thus to invalid partitions which will be discarded by

selection immediately. Therefore, the algorithms operators

pervasively comply with the constraint to always form only

convex partitions.

Further, as already mentioned, an individual is an im-

mensely complex combination of a large number of floating-

point parameters and relations between these. These relations

cause the entire system to be highly epistatic, resulting



in a very low ability to construct higher-order building

blocks from lower-order building blocks. In [Fog95] it is

hypothesized that recombination performs poorly in systems

that are extensively pleiotropic and highly polygenic, and it

is argued that mutation would be superior. Our observations

coincide with this hypothesis. Even though we rely heavily

on the effects of the sophisticated mutation operators, the

satisfying results of the short run experiments support our

approach.

The definition of the problem itself, that is minimizing the

maximum of the aspect ratios of a square’s partition, showed

to include a conceptual problem. Since the fitness value of

an individual solely depends on the worst aspect ratio, there

is almost no possibility to take the rest of the individual into

consideration as well. During the experiments, we observed

that in early generations, the algorithm usually concentrated

on the improvement of a specific polygon before switching

over to another polygon. In later generations, the algorithm’s

optimization oscillated between several polygons, yielding

little improvements regarding the fitness of the individual.

IV. CONCLUSION AND FUTURE WORK

In this paper we addressed the problem of partitioning

a square into circular and convex polygons using an evo-

lutionary algorithm. We identified the theoretical problems

and solved them by introducing specialized operators. The

applicability of the features was justified and the increase

in performance was confirmed by experiments. However, no

new lower bound was found so far.

Observations made during the experiments showed that

finding an optimal aspect ratio partition of a square is

not straightforward. In order to lower the established lower

bound, it would be necessary to use convex pieces with seven

or more vertices on the square’s sides. Figures 9 and 11

indicate that the use of such pieces creates large discrepancies

in the edge lengths of the interior polygons. Although filling

the interior becomes problematic, it is not supposed to be

fundamentally impossible. Nevertheless, the system proved

to be very difficult to optimize because it is highly epistatic.

We will continue our research and concentrate on im-

proving our operators by using predefined patterns. These

templates will work as local heuristics, i.e., suggestions for

the partitioning of polygons of similar shape.
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