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Motivation 
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Renewable Energy: 
!   Has gained increasing interest 
!   Is clean 
!   Substantial to decrease CO2 emission 
!   Is a huge market 
!   Large developing effort 
!   Has many challenging questions. 
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Wind Energy: 
!   Major player in renewable energy 
!   Since 2005 the cumulative installed capacity of wind energy 

within the EU has almost doubled (from 40000 MW to 
74000 MW). 

!   In 2009, 39% of all new energy capacity installed in the EU 
was based on wind.  

!   Roughly 8800 wind turbines in Europe which helped to 
save 180 Mio tons of CO2 since the beginning of 2009. 
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Largest Wind Farms: 
!   Roscoe Wind Farm (Texas, 627 turbines, 781 MW) 
!   Vlorë Wind Farm (Albania, 250 turbines, 500 MW) 

Recent News: 
!   Thanet Wind Farm (Offshore (UK), 100 turbines, 300 MW) 
!   Ontario’s 21,000 Megawatts Offshore Potential 
!   Google invests 38.8 Mio. USD in Wind Energy 
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Very Recent News (9 May 2011): 

“Special Report on Renewable Energy Sources and Climate 
Change Mitigation” 

!   Renewable energy could make up 77% in 2050 
!   Wind energy could be responsible for 20% 
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Source: Wind Power Ninja 
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Wind Speed and Energy 
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Wind Speed: 
!   Most crucial for energy production 
!   Varies over time 
!   Depends on seasonal effects 
!   Weibull distribution gives a good representation of the 

variation in hourly mean wind speed over a year at many 
typical sites 

Probability density function: 

k: Weibull shape parameter 

c: Weibull scale parameter 

p(v, k, c) = k/c(v/c)k−1e−(v/c)k
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Example Weibull distribution: 

Source: Canadian Wind Energy Atlas 



12 

Assume linear energy function 

Source: Canadian Wind Energy Atlas 

β(v) =






0 v < vcut in

λv + η vcut in ≤ v ≤ vrated
Prated vrated < v < vcut out
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Expected energy output of turbine i: 

What’s wrong with that? 

? For wind farm with  
n turbines 
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Wake effects 
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Wake Effect: 
!   On wind farms turbines are placed close to each other 
!   Energy capture of a turbine is influenced by the other 

turbines on the wind farm 
!   Turbines produce wake effects that reduce the wind speed 

usable for energy production 
!   Wake effects influence the efficiency of wind farms: 

turbines in the center may produce just 60% of the energy 
of turbines at the border, which leaves room for 
optimizations. 
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Wake 

Source: Cooperative Institute for Research in Environmental Science  
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R: rotor radius 
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Computation of the wake effect  (Kusiak and Song 2010) 
Let    and    be x and y coordinates 

of the n turbines 

Wake effect only changes scaling parameter of Weibull distribution 
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Energy output of turbine i considering wake effect: 

Total energy output of the wind farm: 

Efarm[η] =
n�

i=1

Ei[η]
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Experimental Study 
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Setting: 
!   Number of turbines: n 
!   Positive coordinates: xi and yi for each turbine i 

Constraints: 
!   Area and length l and wide w:  

!   Proximity constraints: 

R: rotor radius 

Area could include 2n turbines 
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Turbine Placement on wind farm 

Maximal spacing initialization 
Area 
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Wind Scenario (Kusiak and Song, Renewable Energy 2010) 

Kusiak and Song use evolution strategy 
Only results for up to 6 turbines.  
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Experimental Studies: 
!   Use maximal spacing initialization for initial placement 
!   Improve by (10,20)-CMA-ES 
!   Include mechanism to deal with boundary constraints 
!   Improves results of Kusiak and Song 
!   What results do we get for large wind farms? 

Problem:  
!   Evaluation is very costly for large number of turbines 
!   Need sufficiently large number of generations 

 (10000 or 20000) to get good results 
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Sequential Runtimes (predicted runtimes): 
!   200 turbines: 1.4 sec (1 eval) => 2.8 days (10000 gen) 
!   500 turbines: 8.2 sec (1 eval) => 11 days (10000 gen) 
!   1000 turbines: 32.4 sec (1 eval) => 150 days (20000 gen) 

Parallel Runtimes (cluster times per run): 
!   200 turbines: 1.3 days (10000 generations, 30 runs) 
!   500 turbines: 6 days (10000 generations, 30 runs) 
!   1000 turbines: 12 days (20000 generations, 20 evaluations 

parallelized, 2 runs) 
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Just 4,5 – 6%, so what? 
1 year 7,2 ct per KWh, 1.5 MW turbines.  
200 turbines:  
!   4.8 % of 1200 MW = 57.6 MW,  
!   504.576 MWh is 36.3 Mio USD/year  
500 turbines: 
!   5.4 % of 3.100 MW = 167.4 MW,  
!   1.466.424 MWh is 105.6 Mio USD/year  
1000 turbines: 
!   5.9 % of 6.000 MW = 354.0 MW,  
!   3.101.040 MWh is 223.3 Mio USD/year  
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Summary: 
!   Wind energy is an interesting field with challenging 

optimization problems 
!   Problems are very complex 
!   Evolutionary algorithms are well suited for tackling these 

problems 
!   Problems need parallelization of the algorithms 
!   There is a lot of money in this field (grants, government 

support, industry funding) 
!   Computer Science should play a key role 
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Future Work: 
!   Nonlinear power curves 
!   Mixed wind farms 
!   More complex wake models 
!   Exploration of problem-specific algorithms 
!   Combination with other design parameters (cable length) 
!   Multi-objective problems 
!   Project at Future SOC Lab of the Hasso-Plattner-Institut 

(with Tobias Friedrich) 

Thank you! 


