Evolutionary lessons for wind energy efficiency

also known as Optimizing the Turbine Placement of Large Wind Farms

> Markus Wagner School of Computer Science University of Adelaide Adelaide, Australia

Joint work with Frank Neumann (UoA), Una-May O'Reilly (MIT), Kalyan Veeramachaneni (MIT)

Motivation

Renewable Energy:

- Has gained increasing interest
- Is clean
- Substantial to decrease CO₂ emission
- Is a huge market
- Large developing effort
- Has many challenging questions.

Wind Energy:

- Major player in renewable energy
- Since 2005 the cumulative installed capacity of wind energy within the EU has almost doubled (from 40000 MW to 74000 MW).
- In 2009, 39% of all new energy capacity installed in the EU was based on wind.
- Roughly 8800 wind turbines in Europe which helped to save 180 Mio tons of CO_2 since the beginning of 2009.

Largest Wind Farms:

- Roscoe Wind Farm (Texas, 627 turbines, 781 MW)
- Vlorë Wind Farm (Albania, 250 turbines, 500 MW)

Recent News:

- Thanet Wind Farm (Offshore (UK), 100 turbines, 300 MW)
- Ontario's 21,000 Megawatts Offshore Potential
- Google invests 38.8 Mio. USD in Wind Energy

Very Recent News (9 May 2011):

"Special Report on Renewable Energy Sources and Climate Change Mitigation"

- Renewable energy could make up 77% in 2050
- Wind energy could be responsible for 20%

Source: Wind Power Ninja

Wind Speed and Energy

Wind Speed:

- Most crucial for energy production
- Varies over time
- Depends on seasonal effects
- Weibull distribution gives a good representation of the variation in hourly mean wind speed over a year at many typical sites

Probability density function: $p(v,k,c) = k/c(v/c)^{k-1}e^{-(v/c)^k}$

k: Weibull shape parameter

c: Weibull scale parameter

Example Weibull distribution:

The Weibull Distribution

Source: Canadian Wind Energy Atlas

Assume linear energy function

$$\beta(v) = \begin{cases} 0 & v < v_{cut_in} \\ \lambda v + \eta & v_{cut_in} \le v \le v_{rated} \\ P_{rated} & v_{rated} < v < v_{cut_out} \end{cases}$$

Expected energy output of turbine i:

$$\begin{split} P(\theta) \\ p_v(v(\theta), c(\theta), k(\theta)) \\ E^i[\eta] &= \int_{\theta} P(\theta) \int_{v} p_v(v(\theta), c(\theta), k(\theta)) \beta^i(v). \end{split}$$
 For wind farm with
n turbines $E^{farm}[\eta] = \sum_{i=1}^n E^i[\eta]$?

What's wrong with that?

Wake effects

Wake Effect:

- On wind farms turbines are placed close to each other
- Energy capture of a turbine is influenced by the other turbines on the wind farm
- Turbines produce wake effects that reduce the wind speed usable for energy production
- Wake effects influence the efficiency of wind farms: turbines in the center may produce just 60% of the energy of turbines at the border, which leaves room for optimizations.

Source: Cooperative Institute for Research in Environmental Science

Computation of the wake effect (Kusiak and Song 2010)

Let $X = \{x_1, \ldots, x_n\}$ and $Y = \{y_1, \ldots, y_n\}$ be x and y coordinates of the n turbines for i = 1 to number of turbines **do** for $\theta = 0^0$ to 360^0 do for j = 1 to n-1 and $j \neq i$ do $\delta_{i,j} = \cos^{-1} \{ \frac{o + R/\kappa}{\sqrt{(x_i - x_j + (R/\kappa)\cos\theta)^2 + (y_i - y_j + (R/\kappa)\sin\theta)^2}} \}$ $V def_{(i,j)} = u(\delta_{i,j} - \alpha) \frac{a}{(1+bd_{i,j})^2}$ end for $Vdef_i^{\theta} = \sqrt{\sum_j (Vdef_{(i,j)})^2}$ $c_i(\theta) = c_i(\theta) \times (1 - V def_i)$ end for end for Wake effect only changes scaling parameter of Weibull distribution Energy output of turbine i considering wake effect:

$$E^{i}[\eta] = \int_{\theta} P(\theta) \int_{v} p_{v}^{\theta}(v, c_{i}(\theta), k_{i}(\theta), x_{i}, y_{i}, X, Y) \beta^{i}(v)$$

Total energy output of the wind farm:

$$E^{farm}[\eta] = \sum_{i=1}^{n} E^{i}[\eta]$$

Experimental Study

Setting:

- Number of turbines: n
- Positive coordinates: x_i and y_i for each turbine i

Constraints:

Area and length I and wide w: $\forall i : x_i \leq l \text{ and } y_i \leq w$

Proximity constraints: $\forall i, j, i \neq j : \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \ge 8 \cdot R$

R: rotor radius

Area could include 2n turbines

Turbine Placement on wind farm

Maximal spacing initialization

Wind Scenario (Kusiak and Song, Renewable Energy 2010)

l-1	θ^{l-1}	θ^l	k	c	$P(\theta)$	l-1	θ^{l-1}	θ^l	k	c	$P(\theta)$
0	0	15	2	7	0.0002	12	180	195	2	10	0.1839
1	15	30	2	5	0.008	13	195	210	2	8.5	0.1115
2	30	45	2	5	0.0227	14	210	225	2	8.5	0.0765
3	45	60	2	5	0.0242	15	225	240	2	6.5	0.008
4	60	75	2	5	0.0225	16	240	255	2	4.6	0.0051
5	75	90	2	4	0.0339	17	255	270	2	2.6	0.0019
6	90	105	2	5	0.0423	18	270	285	2	8	0.0012
7	105	120	2	6	0.029	19	285	300	2	5	0.001
8	120	135	2	7	0.0617	20	300	315	2	6.4	0.0017
9	135	150	2	7	0.0813	21	315	330	2	5.2	0.0031
10	150	165	2	8	0.0994	22	330	345	2 4.	5	0.0097
11	165	180	2	9.5	0.1394	23	345	360	2	3.9	0.0317

Kusiak and Song use evolution strategy Only results for up to 6 turbines.

Experimental Studies:

- Use maximal spacing initialization for initial placement
- Improve by (10,20)-CMA-ES
- Include mechanism to deal with boundary constraints
- Improves results of Kusiak and Song
- What results do we get for large wind farms?

Problem:

- Evaluation is very costly for large number of turbines
- Need sufficiently large number of generations (10000 or 20000) to get good results

Sequential Runtimes (predicted runtimes):

- 200 turbines: 1.4 sec (1 eval) => 2.8 days (10000 gen)
- 500 turbines: 8.2 sec (1 eval) => 11 days (10000 gen)
- 1000 turbines: 32.4 sec (1 eval) => 150 days (20000 gen)

Parallel Runtimes (cluster times per run):

- 200 turbines: 1.3 days (10000 generations, 30 runs)
- 500 turbines: 6 days (10000 generations, 30 runs)
- 1000 turbines: 12 days (20000 generations, 20 evaluations parallelized, 2 runs)

Euclidean distance moved by each turbine (data based on 30 runs)

Just 4,5 - 6%, so what?

1 year 7,2 ct per KWh, 1.5 MW turbines.

200 turbines:

- 504.576 MWh is 36.3 Mio USD/year

500 turbines:

- 5.4 % of 3.100 MW = 167.4 MW,

1000 turbines:

- 5.9 % of 6.000 MW = 354.0 MW,

Summary:

- Wind energy is an interesting field with challenging optimization problems
- Problems are very complex
- Evolutionary algorithms are well suited for tackling these problems
- Problems need parallelization of the algorithms
- There is a lot of money in this field (grants, government support, industry funding)
- Computer Science should play a key role

Future Work:

- Nonlinear power curves
- Mixed wind farms
- More complex wake models
- Exploration of problem-specific algorithms
- Combination with other design parameters (cable length)
- Multi-objective problems
- Project at Future SOC Lab of the Hasso-Plattner-Institut (with Tobias Friedrich)

Thank you!