Local Search and the Traveling Salesman Problem: A Feature-Based Characterization of Problem Hardness

Olaf Mersmann, Bernd Bischl, Jakob Bossek and Heike Trautmann
Department of Statistics, TU Dortmund University, Germany
Markus Wagner and Frank Neumann School of Computer Science, The University of Adelaide, Australia

The Traveling Salesman Problem (TSP)

CC BY-NC 2.5 http://www.xkcb.com

Aim: Predict Hardness of TSP instances

Problem Hardness: Two options

Number of swaps/iterations/...

Used in Smith-Miles et al. (2010)

Approximation quality

$$
=\frac{\text { Expected solution tour length }}{\text { Optimal tour length }}
$$

Characterize TSP instances

Requirement

All features can be computed without knowledge of the optimal tour. Eliminates some (interesting) features.

Challenges

Normalization, dependence on \# of nodes / edges

Characterize TSP instances

Taken from literature

Literature used

Smith-Miles et al. (2010), Kanda et al. (2011) and Smith-Miles and van Hemert (2011)

Classes of features

\triangleright Nearest Neighbor Distance (NNDs)
\triangleright Clustering
\triangleright Edge Costs / Distance Matrix

Focus on 2-opt (Croes, 1958) algorithm.

Reasons

\triangleright Historically first successful local search method for TSP
\triangleright Easy to understand
\triangleright Some progress on theoretical analysis (Chandra et al., 1999 and Englert et al., 2007)

Where do the TSP instances come from?

Instance Generator: EA

```
function tsp_generator(popSize=30, instSize=100, poolSize=50,
                    digits=2, repetitions=500):
pop = randomInstances(popSize, instSize)
while not done:
    fitness = computeFitness(pop, repetitions)
    matingPool = tournamentSelection(pop, poolSize, fitness)
    nextPop[1] = pop[whichBest(fitness)]
    for k = 2 to popSize:
        parent1, parent2 = randomElements(2, matingPool)
        offspring = uniformCrossover(parent1, parent2)
        nextPop[k] = round(
        uniformMutation(normalMutation(offspring)), digits)
pop = nextPop
```


Use EA to generate 100 easy and hard instances

Problems

\triangleright Fitness function expensive
\triangleright Lots of manual tuning of EA
\triangleright Some runs hung

0. Mersmann et.al

Observation

1 Tour leg lengths differ less for hard instances.

Prediction

\triangleright Calculate all features for the 200 instances
\triangleright Use decision tree (CART) to predict instance type

```
coefficient_of_variation_of_nnds >= 0.5167739 -> easy
coefficient_of_variation_of_nnds < 0.5167739
    highest_edge_cost >= 0.000485 -> easy
    highest_edge_cost < 0.000485 -> hard
```

 10-fold CV error rate: 3.02\%

This was an "easy" task.

Instances chosen to be maximally different!

Morphing instances

We are missing instances that are between the two classes.

Idea

Create convex combination of an easy I_{e} and a hard instance I_{h}

$$
I_{n}=\alpha I_{e}+(1-\alpha) I_{h} \quad \text { with } \quad \alpha \in[0,1]
$$

Morphing instances

Possible Improvements

Match up points to minimize movement

Usage

\triangleright For every combination of instances generate morph
\triangleright Calculate features for different $\alpha(0.2,0.4, \ldots, 0.8)$

Problem Hardness

Max Edge Cost

0. Mersmann et.al

CoV of nNNDs

0. Mersmann et.al

LION 6 - Paris, France

Mean of nNNDs

0. Mersmann et.al

LION 6 - Paris, France

Variation of Edge Cost

Ratio of Cities near Edge

0. Mersmann et.al

LION 6 - Paris, France

Prediction

Fit MARS model to data.
\triangleright Only use subset of morph results
\triangleright Do SFS to select subset of variables
RMSE estimated via 3-fold CV: 0.0113

Interpretation

Not a black-box model. Please see paper for plots and interpretation.

Conclusion

\triangleright Generated "easy" and "hard" instances for 2-opt heuristic
\triangleright Characterized the instance sets using easily calculated features

- Showed novel approach to generate "medium" instances (morphing)
\triangleright Predicted hardness of instance based on features using simple models

Outlook

\triangleright Optimize instance generation
\triangleright Study relation between features and theoretical properties of 2-opt
\triangleright Improve morphing
\triangleright Generate more diverse instance sets

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

CHOTCHKIES RESTAURALT	
\sim APPETLZERS	
MuxED FRUIT	2.15
FRENCH FRIES	2.75
SIDE SALAD	3.35
HOT WINGS	3.55
MOZZARELLA STICKS	4.20
SAMPLER PLATE	5.80
SANDVICHES PADRECIIE	

CC BY-NC 2.5 http://www.xkcb.com

