

Markus Wagner and Tobias Friedrich

Efficient Parent Selection for Approximation-Guided Evolutionary Multi-Objective Optimization

Friedrich Schiller University of Jena

Introduction

 Pareto front: set of all the (many) different trade-offs

- EMOAs restrict themselves to a smaller set that should be a good approximation of the Pareto front
- Different EMOAs (e.g., NSGA-II, SPEA2, IBEA, SMS-EMOA, MOEA/D, ...) try to achieve approximations by preferring diverse sets of non-dominated solutions.
- The typical lack of a formal notion of approximation makes it hard to evaluate and compare algorithms for MOO problems.

Approximation-Guided Evolution (AGE)

- Motivated by studies in theoretical computer science
 [initially: formal notion
 then: comparison with the hypervolume indicator
 now: an efficient framework]
 [Cheng, Janiak, Kovalyov 1998]
 [Papadimitriou, Yannikakis 2006]
 [Vasilvitskii, Yannakakis 2006]
 [Diakonikolas, Yannakakis 2006]
- The AGE framework

- [Cheng, Janiak, Kovalyov 1998] [Papadimitriou, Yannikakis 2000, 2001] [Vasilvitskii, Yannakakis 2005] [Diakonikolas, Yannakakis 2009] [Daskalakis, Diakonikolas, Yannakakis 2010] [Bringmann, Friedrich 2010]
- allows to incorporate a formal notion of approximation
- improves the approximation quality iteratively
- uses the best knowledge obtained so far ("archive")
- Given a fixed time+evaluations budget, AGE outperforms other EMOAs in terms of the desired additive approximation, as well as the covered hypervolume (see our IJCAI '11 article)

Contribution

- Approximation-Guided Evolution (AGE) [IJCAI '11]
 - 1. Its runtime of AGE can suffer in high-dimensional spaces
 - 2. It has a mediocre performance on "easy" problems
- Parent Selection for AGE

today

- 1. Non-random
- 2. Computationally efficient
- 3. Not detrimental in high-dimensional spaces

What is approximation?

On Problems with Many Objectives (see Section IIb)

Fig. 1. Achievable additive approximations of the Pareto fronts, when only all corner points are found for DTLZ 1 (--) and for DTLZ 2/3/4 (--), and when only the centre of the Pareto front is found for DTLZ 1 (--) and for DTLZ 2/3/4 (--)

Approximation-Guided EA

- α(f,X) is the approximation ratio achieved by the set X with respect to the Pareto front f
- Aim: find X such that α(f,X) is minimised
- Problem: we do not know the Pareto front f
- Solution: use the union of all non-dominated points seen so far ("archive") as an approximation of the Pareto front f


```
Parent Selection
```


All eight investigated approaches are

- computationally inexpensive
- increase the selection pressure

Approaches

- 1. Random selection
- 2. Focus on the first fronts of the population
 - Variant 1: exclusive focus on the first front
 - Variant 2: bias towards the first front
- 3. Use of crowding distance
- 4. Random omission of solutions
- ... and several combinations of these

Experiments

- NSGA-II, IBEA, SPEA2, SMS-EMOA
 AGE with eight parent selection strategies
- DTLZ family can be scaled in the number of objectives: DTLZ 1/2/3/4 (each with d=2,...,20)
 → 48 functions, plenty of plots
- Limits: 100.000 evaluations, 4h
- μ=100, SBX, PM, implemented in jMetal

(Psst... code is available online... http://tinyurl.com/age2013)

Conclusions

Approximation-Guided Evolution with non-random Parent-Selection

- an efficient approach to solve multi-objective optimisation problems with few and many objectives
- no parameters
- enables practitioners
 - 1. to **add objectives** with only minor consequences
 - 2. to **explore** problems for even higher dimensions

Future work

- Use it!
- Code is available online... <u>http://tinyurl.com/age2013</u> Java + C (soon)
- Bonus: AGE will be in the next jMetal version! ③