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Overview

Genetic Programming (GP):
§ Highly complex GP variants address challenging 

problems, e.g., in symbolic regression
§ Currently, it seems to be impossible to analyse these 

complex variants on complex problems.

Our key questions
§ Which optimisation problems can provably be solved by 

(simple) GPs in polynomial time?
§ Can we provide design support to a practitioner?



Current Status “EA Theory”

Computational Complexity Analysis of Evolutionary 
Computing

§ EAs for discrete combinatorial optimisation (lots of 
results)

§ Evolutionary Multi-Objective Optimisation (many 
results)

§ Ant Colony Optimisation (some results)
§ EAs for continuous optimisation (initial results)
§ Particle Swarm Optimisation (initial results)

§ Our Goal: Rigorous insights into the working principles 
of GP using existing approaches!



Current Status “GP Theory”
Initial article [Durrett/Neumann/O'Reilly 2011]

“GP Computational Complexity on ORDER/MAJORITY”
Properties of the functions: 
§ Separable (subproblems can be optimised independently)
§ Admit multiple solutions

Additional works by Kötzing, Neumann, Nguyen, O’Reilly, 
Sutton, Urli, and Wagner (2011-2014):

§ MAX problem, generalised ORDER/MAJORITY
§ Different mutation strategies
§ Different multi-objective GPs

In summary: 
§ Techniques: fitness-based partitions, random walks, coupon 

collector arguments, drift analysis, failure events, …
§ many bounds known



§ One of the basic problems in computer science.
§ Optimisation problem: maximise the sortedness in a 

given permutation of elements.
§ First combinatorial optimisation problem analysed for 

EAs.
§ Many measures of sortedness work provably well for 

permutation based EAs (Scharnow/Tinnefeld/Wegener
2002).

http://materikuliah.info/files/2010/11/750403_Sortierbrett_Sorting_Board_01_medium.jpg
http://us.123rf.com/400wm/400/400/pzaxe/pzaxe1104/pzaxe110400104/9402245-a-small-handful-of-children-s-toy-blocks-on-a-white-background.jpg

SORTING



Given a permutation s (e.g. 1  3  2  4 5 )
§ INV(s) pairs in order in s
§ HAM(s) Hamming distance to optimum
§ RUN(s) number of ascending (sorted) subsequences
§ LAS(s) longest ascending sequence length
§ EXC(s) number of pairwise exchanges

Scharnow/Tinnefeld/Wegener 2002: Polynomial upper 
bounds for all functions, except RUN.

Measures of Sortedness



Four Algorithms
§ Tree-based approaches
§ Inorder parse leads to (incomplete) permutation**
§ Consider different sortedness (fitness) measures

GP and SORTING

or lawnmower for GP with automatically defined functions
[6]). Each problem has a simple relation to more realistic GP
problems: ORDER requires correct ordering as in conditional
programs and MAJORITY requires the correct set of solution
components.
We proceed as follows: in section 2, we formally describe

the GP variants and the two problems, which includes de-
scribing program initialization from a primitive set and our
mutation operator which is called HVL-Prime. We then
proceed in sections 3 and 4 with our analyses of ORDER
and MAJORITY in terms of the expected number of fitness
evaluations until our algorithms have produced a globally
optimal solution for the first time. This is called the expected
optimization time of the algorithm. Our results are followed
by a discussion in section 5 and conclusions and future work
in section 6.

2. DEFINITIONS

2.1 Program Initialization
To use tree-based genetic programming [5], one must first

choose a set of primitives A, which contains a set F of
functions and a set L of terminals. Each primitive has ex-
plicitly defined semantics; for example, a primitive might
represent a Boolean condition, a branching statement such as
an IF-THEN-ELSE conditional, the value bound to an input
variable, or an arithmetic operation. Functions are parame-
terized. Terminals are either functions with no parameters,
i.e. arity equal to zero, or input variables to the program
that serve as actual parameters to the formal parameters of
functions.
In our derivations, we assume that a GP program is ini-

tialized by its parse tree construction. In general, we start
with a root node randomly drawn from A and recursively
populate the parameters of each function in the tree with
subsequent random samples from A, until the leaves of the
tree are all terminals. Functions constitute the internal nodes
of the parse tree, and terminals occupy the leaf nodes. The
exact properties of the tree generated by this procedure will
not figure into the analysis of the algorithm, so we do not
discuss them in depth.

2.2 HVL-Prime
The HVL-Prime operator is an update of O’Reilly’s HVL

mutation operator ([10, 11]) and motivated by minimal-
ity rather than inspired from a tree-edit distance metric.
HVL first selects a node at random in a copy of the current
parse tree. Let us term this the currentNode. It then, with
equiprobability, applies one of three sub-operations: inser-
tion, substitution, or deletion. Insertion takes place above
currentNode: a randomly drawn function from F becomes
the parent of currentNode and its additional parameters are
set by drawing randomly from L. Substitution changes cur-
rentNode to a randomly drawn function of F with the same
arity. Deletion replaces currentNode with its largest child
subtree, which often admits large deletion sub-operations.
The operator we consider here, HVL-Prime, functions

slightly di�erently, since we restrict it to operate on trees
where all functions take two parameters. Rather than choos-
ing a node followed by an operation, we first choose one of
the three sub-operations to perform. The operations then
proceed as shown in Figure 1. Insertion and substitution
are exactly as in HVL; however, deletion only deletes a leaf

and its parent to avoid the potentially macroscopic deletion
change of HVL that is not in the spirit of bit-flip mutation.
This change makes the algorithm more amenable to com-
plexity analysis and specifies an operator that is only as
general as our simplified problems require, contrasting with
the generality of HVL, where all sub-operations handle prim-
itives of any arity. Nevertheless, both operators respect the
nature of GP’s search among variable-length candidate solu-
tions because each generates another candidate of potentially
di�erent size, structure, and composition.

In our analysis on these particular problems, we make one
further simplification of HVL-Prime: substitution only takes
place at the leaves. This is because our two problems only
have one generic “join” function specified, so performing a
substitution anywhere above the leaves is a vacuous mutation.
Such operations only constitute one-sixth of all operations,
so this change has no impact on any of the runtime bounds
we derive.

(a) Before insertion (b) After insertion

(c) Before deletion
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(d) After deletion

(e) Before substitution (f) After substitution

Figure 1: Example of the operators from HVL-
Prime.

2.3 Algorithms
We define two genetic programming variants called

(1+1) GP and (1+1) GP*. Both algorithms work with a
population of size one and produce in each iteration one
single o�spring. (1+1) GP is defined in Algorithm 1 and
accepts an o�spring if it is as least as fit as its parent.

Algorithm 1 ((1+1) GP).

1. Choose an initial solution X.

2. Set X � := X.

3. Mutate X � by applying HVL-Prime k times. For each
application, randomly choose to either substitute, insert,
or delete.



Algorithms (summary)
(1+1)-GP*, F(X)

requires: strict fitness improvement
noteworthy: number of sortedness improving steps 

limits solution size

(1+1)-GP, F(X)
requires: not worse
noteworthy: no bloat control

(1+1)-GP, MO-F(X)
requires: at least not longer
noteworthy: parsimony pressure towards shorter solutions

SMO-GP, MO-F(X)
requires: weak dominance
noteworthy: number of different sortedness values limits 

population size



Variation Operator: HVL-mutate

Choice of parameter k: 
§ k=1 do a single operation
§ k=1+Poisson(1) do multiple operations

With equal probability, do…



Results (before this paper)



Results (*this paper)

Advertisement
Approximation-Guided 
Evolution (AGE)
- Theory-motivated
- many dimension (2-20D)



At least 
not longer

Strict
improv.

Not 
worse

At least 
not longer
(multi mutation)





Algorithms (summary)
(1+1)-GP*, F(X) number of sortedness improving steps 

limits solution size

(1+1)-GP, F(X) no bloat control

(1+1)-GP, MO-F(X) parsimony pressure

SMO-GP, MO-F(X) number of different sortedness values
limits population size



Results SMO-GP

Proof idea:
1. Introduce the empty solution in O(kTinit)

C(X)

F(X)

Proof idea:
1. Introduce the empty solution in O(kTinit)
2. Build up the Pareto front step by step.

Polynomial bounds for 
SMO-GP–single/-multi
using INV & LAS

opt



Algorithm (1/4)
(1+1)-GP*-single for maximisation

HVL mutate



Algorithm (1/4)
(1+1)-GP*-single for maximisation



Algorithm (2/4)
(1+1)-GP -single for maximisation



Algorithm (3/4)
(1+1)-GP -single for maximisation

Parsimony pressure to favour short solutions: use MO-F(X) instead of F(X)

MO-F(Y) ≥ MO-F(X) holds iff F(Y) > F(X)  or
(F(Y) = F(X) and C(Y) ≤ C(X))



Algorithm (4/4)
SMO-GP 

A proper MO algorithm for the sortedness F(X) and the 
solution quality C(X).



Results (1+1)-GP*

è The expected optimisation time is O(n3Tmax) using INV.

Proof based on fitness-based partition:
§ n(n-1)/2+1 different sortedness values possible
§ Probability to make an 

improving mutation
§ Overall optimisation

time bounded by

For HAM, LAS, RUN & EXC: local optima exist that can only be 
left in expected exponential time with n mutations.



Results (1+1)-GP

è No results for the (1+1)-GP, F(X).

è The expected optimisation time of (1+1)-GP-single on 
MO-LAS is O(Tinit+n2log n).

Proof idea:
§ Deleting all blocking and surplus leaves takes 

O(Tinit+n log n)
§ Correctly inserting the missing leaves then takes 

O(n2log n)

“Multi” case: a sortedness improvement may be 
accompanied by the insertion of many elements…



Results (1+1)-GP
Bound the solution size [t=poly(n) steps and C(Tinit)=poly(n)]
§ Failure probability for inserting at most nε in a single HVL operation 

is e-Ω(nε).
§ For LAS and EXC, at most n sortnedness improving steps are 

possible.
§ Thus, the failure probability for adding at most nnε in t time steps is 

te-Ω(nε)=e-Ω(nε).
§ Thus, the size does not exceed Tinit+nnε within poly(t) time steps, 

with high probability.

è The optimisation time of (1+1)-GP-multi on MO-LAS is 
O(Tinit+n2log n), with probability 1-o(1).

Proof idea:
§ As before
§ Use Chernoff bounds and multiplicative drift with tail bounds to 

consider multiple mutations.



Huge set of methods for the analysis is available:
§ Fitness-based partitions
§ Expected distance decrease
§ Coupon Collector’s Theorem
§ Markov, Chebyshev, Chernoff, Hoeffding bounds
§ Markov chain theory: waiting times, first hitting times
§ Rapidly mixing Markov chains
§ Random walks: gambler’s ruin, drift analysis, martingale 

theory
§ Identifying typical events and failure events
§ Potential functions

Methods



Computational Complexity Analysis

Black Box Scenario
§ Measure the runtime T by the number of fitness 

evaluations.
§ Consider time to reach

– an optimal solution
– a good approximation

Alternative: Analyse
§ expected number of fitness evaluations
§ success probability after a fixed number of t steps.



Introduction

There are many 
§ successful applications and
§ experimental studies
of Genetic Programming.

We want to
§ argue in a rigorous way about GP algorithms and 
§ contribute to their theoretical understanding.

This is also important for the acceptance of GP outside the  
EC community.



Classical Algorithm Analysis

§ Classical algorithm analysis has a large focus on runtime 
and approximation behavior of algorithms.

Our key questions
§ Which optimization problems can provably be solved by 

(simple) GPs in polynomial time?
§ (Which functions can provably be learned by (simple) GP 

systems in polynomial time?)


