
Maximising Axiomatization Coverage and
Minimizing Regression Testing Time

Markus Wagner

Who guards the guardians?

How to improve trust in formal verification systems?

Modern verification systems are large and complex systems
• Soundness bugs are not rare
• Such bugs are often hard to detect in a real proof

“Auto-active” Verification Systems

Validating verification systems by
§ Formal methods
§ Code inspection
§ Testing
§ …

Program Language Semantics

We have to test both!
But how to determine the quality of the test cases?

Static checkers Verifying compilers Logic frameworks

Test Cases

A test case is a program P, together with requirement and
auxiliary specifications.

Computing coverage for the test cases takes from a few
minutes to several hours.

Manually creating test cases is extremely time-consuming.

Case study: The KeY System

The KeY System

§ Deductive verification system for JavaCard
§ Sequent calculus for Java Dynamic Logic, uses symbolic

execution for Java programs
§ Interactive verification with automatic proof mode

Important
§ The semantics of JavaCard is encoded in 1520 axioms

(“small, well-understood set of sentences”)

Coverage Results (naïve, TAP 2013)

The 319 completeness tests of KeY covered 40% of all
axioms (611 out of 1520).

100 200 300 400
Axioms

Heuristic Approaches

Reusing Test Cases

Idea: given a test case T, run the tool with just a subset of
the 1520 axioms.

Axioms / {axiom1}
Axioms / {axiom2}
Axioms / {axiom3}

New coverage

drop one
essential
axiom

1520 axioms

Reusing Test Cases

Three simple heuristics to pick the “next axiom to drop”:
[0. Base case] 611 (40%)
1. Depth-first 701 (46%)
2. Depth-first, random selection 699 (46%)
3. Greedy (try to remove groups) 688 (45%)
4. Breadth-first 687 (45%)
5. Breadth-first, random selection 684 (45%)

1520 axioms

1460 axioms

Often unsuccessful

More diverse sets

Naïve and good results

à Complimentary by
design, verified by
experiments.

Note:
- 24h per heuristic

per test case
- Extremely fragile

Maximising Coverage & Minimising Time

All test cases
20,000 test cases
Runtime: days
48% coverage

Fast Regr. Testing
100 test cases
Runtime: 1 h
48% coverage

Originally
319 test cases
40% coverage

Clustering Results

à Problem understanding!

Test Case Selectivity

Only specific test cases, or test cases with broad coverage
for an axiom may not be sufficient.

Axioms

Completeness Coverage

Definition (Completeness Coverage, TAP 2013)
A test case P + (REQ υ AUX) covers the set of Axioms if
§ Axioms |- P + (REQ υ AUX)
§ and this does not hold for Axioms’ Axioms

Note: covered set Axioms is not uniquely defined by the test
case

Computing Completeness Coverage

Given: set of axioms Ax and completeness test case T
Result: completeness coverage by T

1. Run tool on T, record resource consumptions (to get upper
limit for the subsequent runs).

2. If available, analyse proof artifacts to restrict the next step to
a subset of Ax.

3. Remove stepwise from Ax and check if proof is still valid.
[repeat until a fix-point is reached]

Computing coverage for most test cases takes from a few minutes
to several hours.

