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Abstract. The productivity of real-world systems is often limited by
so-called bottlenecks. Hence, usually companies are not only interested
in finding the best ways to schedule their current resources so that their
benefits are maximized (optimization), but, in order to increase the pro-
ductivity, they also conduct some analysis to find bottlenecks in their
system and eliminate them in the most efficient way (e.g., with the lowest
investment). We show that the current frequently used analysis (based
on average shadow price) for identifying bottlenecks has some limita-
tions: (1) it is limited to linear constraints, (2) it does not consider all
potential sources for bottlenecks in a system, and (3) it does not provide
adequate tools for decision makers to find the best way of investment to
eliminate bottlenecks and maximize the profit they can gain. We propose
a more comprehensive definition of bottlenecks that covers these limita-
tions. Based on this new definition, we propose a multi-objective model
for the benefit and investment. The solution for this model provides the
best way of investment in resources to achieve maximum profit. As the
proposed model is multi-objective and non-linear, it opens an important
opportunity for the application of evolutionary algorithms, which can
subsequently have a significant impact on the decision making process
of companies.
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1 Introduction

Usually real-world optimization problems contain constraints in their formu-
lation. The definition of constraints in management sciences is “anything that
limits a system from achieving higher performance versus its goal” [5]. In general,
a constrained optimization problem (COP) is defined as:

find x ∈ S s.t. z = max{f(x)} subject to (1)

gi(x) ≤ 0, for i = 1 to q

hi(x) = 0, for i = q + 1 to m

where f , gi, and hi are real-valued functions on the search space S, q is the
number of inequalities, m − q is the number of equalities, and s.t. is the short
form of “such that” [2, 12]. Hereafter, the term COP refers to this formulation.
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It is believed that the optimal solution of most real-world optimization prob-
lems is found on the edge of a feasible area of the search space of the problem [15].
This belief is not limited to computer science, but it is also found in operational
research (linear programming, LP) [3] and management sciences (theory of con-
straints) [11, 14] articles. The reason behind this belief is that, in real-world
optimization problems, constraints usually represent limitations of availability
of resources. As it is usually beneficial to utilize the resources as much as pos-
sible to achieve a high-quality solution (in terms of the objective value, f), it is
expected that the optimal solution is a point where a subset of these resources is
used as much as possible, i.e., gi(x

∗) = 0 for some i and a particular high-quality
x∗ in the general formulation of COPs [1]. Thus, the best feasible point is usu-
ally located where the value of these constraints achieve their maximum values
(0 in the general formulation). The constraints whose values are maximized at
the optimum point are called active constraints. The constraints that are active
at the optimum solution can be thought of as bottlenecks that constrain the
achievement of a better objective value [11, 13].

Decision makers in industries usually use some tools, known as decision sup-
port systems (DSS) [8], as a guidance for their decisions in different areas of their
systems. Probably the most important areas that decision makers need guidance
from DSS are: (1) optimizing schedules of resources to gain more benefit (ac-
complished by an optimizer in DSS), (2) identifying bottlenecks (accomplished
by analyzing constraints in DSS), and (3) determining the best ways for future
investments to improve their profits (accomplished by an analysis for removing
bottlenecks1, known as what-if analysis in DSS). Such support tools are more
readily available than one might initially think: for example, the widespread
desktop application Microsoft Excel provides these via an add-in.2

Identification of bottlenecks and the best way of investment is at least as valu-
able as the optimization in many real-world problems from an industrial point
of view because: “An hour lost at a bottleneck is an hour lost for the entire
system. An hour saved at a non-bottleneck is a mirage” [6]. Industries are not
only after finding the best schedules of their resources (optimizing the objective
function), but they are also after understanding the tradeoffs between various
possible investments and potential benefits. During the past 30 years, evolution-
ary computation methodologies (e.g., evolutionary algorithms) have provided
appropriate tools for optimization. However, the last two areas (identifying bot-
tlenecks and removing them) that are needed in DSSs seem to have remained
untouched by evolutionary computation methodologies while it has been an ac-
tive research area in management and operations research.

In this article, we review some existing studies on identifying and remov-
ing bottlenecks. We investigate the most frequently used bottlenecks removing
analysis (the so-called average shadow price [3]) and identify its limitations.

1 The term removing a bottleneck refers to the investment in the resources related to
that bottleneck to prevent those resources from constraining the problem solver to
achieve better objective values.

2 http://tinyurl.com/msexceldss, last accessed 29th March 2014.
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We argue that the root of these limitations can be found in the interpretation of
constraints and the definition of bottlenecks. In particular, the previous studies
have assumed only linear constraints and they have related bottlenecks only to
one specific property of resources (usually the availability of resources). Further,
they have not provided appropriate tools to guide decision makers in finding
the best ways of investments in their system so that their profits are maximized
by removing the bottlenecks. We propose a more comprehensive definition for
bottlenecks that not only leads us to design a more comprehensive model for
determining the best investment in the system, but also addresses all mentioned
limitations. Because the new model is multi-objective and may lead to the for-
mulation of non-linear objective functions/constraints, evolutionary algorithms
have a good potential to be successful on this proposed model. In fact, by ap-
plying multi-objective evolutionary algorithms to the proposed model, the found
solutions represent points that optimize the objective function and the way of
investment with different budgets at the same time.

This article is structured as follows. We explain the relevant concepts in
Section 2. In Section 3, we highlight limitations of a well-known bottleneck def-
inition. In Section 4, we present our model of bottlenecks that addresses these
limitations. In Section 5 we present two first evolutionary approaches that con-
sider investments in order to remove bottlenecks. We conclude the paper in
Section 6, where we also provide directions for future research.

2 Background

In this section, we provide background information on linear programming, the
concept of shadow price, and bottlenecks in general. Let us begin with linear
programming. A Linear Programming (LP) problem is a special case of COP
(as defined in eq. 1), where f(x) and gi(x) are linear functions:

find x such that z = max{cTx} subject to Ax ≤ b (2)

where A is a m × d dimensional matrix known as coefficients matrix, m is the
number of constraints, d is the number of dimensions, c is a d-dimensional vector,
b is a m-dimensional vector known as Right Hand Side (RHS), x ∈ R

d, and
x ≥ 0. The shadow price (SP) for the ith constraint of this problem is the value
of z when bi is increased by one unit. This in fact refers to the best achievable
solution if the RHS of the ith constraint was larger, i.e., that more resources
were available [10].

The concept of SP in Integer Linear Programming (ILP) is different from the
one in LP [13]. The definition for ILP is similar to the definition of LP, except
that x ∈ Z

d. In ILP, the concept of Average Shadow Price (ASP) was introduced
in [9]. Let us define the perturbation function zi(w) as follows:

find x s.t. zi(w) = max{cTx} subject to aix ≤ bi + w, akx ≤ bk, ∀k �= i (3)

where ai is the ith row of the matrix A and x ≥ 0. Then, the ASP for the ith

constraint is defined by ASPi = supw>0{(zi(w) − zi(0))/w}. ASPi represents
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that if adding one unit of the resource i costs p and p < ASPi, then it is
beneficial (the total profit is increased) to buy w units of this resource. This
information is very valuable for the decision maker as it is helpful for removing
bottlenecks. Although the value of ASPi refers to “buying” new resources, it is
possible to similarly define a selling shadow price [9]. The concept of ASP was
extended in a way that a set of resources were considered [4] rather than only
one resource at a time. Note, however, that this set is predefined by the user
and then the analysis is conducted [4]. There, it was also shown that ASP can
be used in mixed integer LP (MILP) problems.

Now, let us take a step back from the definition of ASP in the context of
ILP, and let us see how it fits into a bigger picture of resources and bottlenecks.
As we mentioned earlier, constraints usually model availability of resources and
limit the optimizers to achieve the best possible solution which maximizes (min-
imizes) the objective function [10, 11, 14]. Although finding the best solution
with the current resources is valuable for decision makers, it is also valuable to
explore opportunities to improve solutions by adding more resources (e.g., pur-
chasing new equipment) [9]. In fact, industries are after the most efficient way of
investment (removing the bottlenecks) so that their profit is improved the most.

Let us assume that the decision maker has the option of providing some
additional resource of type i at a price p. It is clearly valuable if the problem
solver can determine if adding a unit of this resource can be beneficial in terms
of improving the best achievable objective value. It is, however, not necessarily
the case that adding a new resource of the type i improves the best achievable
objective value. As an example, consider there are some trucks that load products
into some trains for transportation. It might be the case that adding a new train
does not provide any opportunity for gaining extra benefit because the current
number of trucks is too low and they can not fill the trains in time. In this case,
we can say that the number of trucks is a bottleneck. Although it is easy to
define bottleneck intuitively, it is not trivial to define this term in general.

There are a few different definitions for bottlenecks [13]. A definition for bot-
tlenecks was proposed in [13] which was claimed to be the most comprehensive
definition: “a set of constraints with positive average shadow price”. In fact, the
average shadow price in a linear and integer linear program can be considered
as a measure for bottlenecks in a system [11].

3 Limitations of the Existing Bottleneck Definition

Although ASP can be useful in determining the bottlenecks in a system, it has
some limitations when it comes to removing bottlenecks. In this section, we
discuss some limitations of removing bottlenecks based on ASP.

Obviously, the concept of ASP has been only defined for LP and MILP, but not
for problems with non-linear objective functions and constraints. Thus, using the
concept of ASP prevents us from analyzing bottlenecks in a non-linear system.
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Let us consider the following simple problem3 (the problem is extremely simple
and it has been only given as an example to clarify limitations of the previous
definitions): in a mine operation, there are 19 trucks and two trains. Trucks are
used to fill trains with some products and trains are used to transport products
to a destination. The rate of the operation for each truck is 100 tonnes per hour
(tph) and the capacity of each train is 2,000 tonnes. What is the maximum
tonnage that can be loaded to the trains in one hour? The ILP model for this
problem is given in eq. 4:

find x and y s.t. z = max{2000y} subject to (4)

g1 : 2000y− 100x ≤ 0, g2 : x ≤ 19, g3 : y ≤ 2

where x ≥ 0 is the number of trucks and y ≥ 0 is the number of loaded trains
(y can be a floating point value which refers to partially loaded trains). The
constraint g1 limits the amount of products loaded by the trucks into the trains
(trucks can not overload the trains). The solution is obviously y = 0.95 and
x = 19 with objective value 1,900. ASPs for the constraints are as follows:

– ASP for g1 is 1: by adding one unit to the first constraint (2000y− 100x ≤ 0
becomes 2000y− 100x ≤ 1) the objective value increases by 1,

– ASP for g2 is 100: by adding 1 unit to the second constraint (x ≤ 19 becomes
x ≤ 20) the objective value increases by 100,

– ASP for g3 is 0: by adding 1 unit to the third constraint (y ≤ 2 becomes
y ≤ 3) the objective value does not increase.

Accordingly, the first and second constraints are bottlenecks as their corre-
sponding ASPs are positive. Thus, it would be beneficial if investments are con-
centrated on adding one unit to the first or second constraint to improve the
objective value. Adding one unit to the first constraint is meaningless from the
practical point of view. In fact, adding one unit to RHS of the constraint g1
means that the amount of products that is loaded into the trains can exceed the
trains’ capacities by one ton, which is not justifiable. In the above example, there
is another option for the decision maker to achieve a better solution: if it is pos-
sible to improve the operation rate of the trucks to 101 tph, the best achievable
solution is improved to 1,919 tonnes. Thus, it is clear that the bottleneck might
be a specification of a resource (the operation rate of trucks in our example) that
is expressed by a value in the coefficients matrix and not necessarily RHS. The
commonly used ASP, which only gives information about the impact of changing
RHS in a constraint, cannot formulate such bottlenecks.

Figure 1 illustrates this limitation. The value of ASP represents only the effects
of changing the value of RHS of the constraints (Figure 1, left) on the objective
value while it does not give any information about the effects the values in the
coefficients matrix might have on the objective value (constraint g1 in Figure 1,

3 We have made several such industry-inspired stories and benchmarks available:
http://cs.adelaide.edu.au/~optlog/research/bottleneck-stories.htm

http://cs.adelaide.edu.au/~optlog/research/bottleneck-stories.htm
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Fig. 1. x and y are number of trucks and number of trains respectively, gray gradient:
indication of objective value (the lighter the better), shaded area: feasible area, g1, g2, g3
are constraints, the white point is the best feasible point

right). However, as we showed in our example, it is possible to change the values
in the coefficient matrix in order to achieve better solutions.

The value of ASP does not provide any information about the best strategy
of selecting bottlenecks to remove. In fact, it only provides information about
the benefit of elevating the RHS in each constraint or a given set of constraints
and does not say anything about the order of significance of the bottlenecks. It
remains the task of the decision maker to compare different scenarios by selecting
different subset of constraints (also known as what-if analysis4). Of course one
can analyze all possible subsets of constraints to find which subset is the most
beneficial one to invest on. However, this strategy potentially leads to solving
another hard problem, that is a subset selection. From a managerial point of
view, it is important to answer the following question: is adding one unit to the
first constraint (if possible) better than adding one unit to the second constraint
(purchase a new truck)? Note that in real-world problems, there might be many
resources and constraints, and a manual analysis of different scenarios might be
prohibitively time consuming. Thus, a smart strategy is needed to find the best
set of to-be-removed bottlenecks in order to gain maximum profit with lowest
investment. In summary, the limitations of identifying bottlenecks using ASP
are:

Limitation 1. ASP is only applicable if objective and constraints are linear.
Limitation 2. ASP does not evaluate changes in the coefficients matrix (the

matrix A) and it is only limited to RHS.
Limitation 3. ASP does not provide information about the strategy for invest-

ment in resources, and the decision maker has to manually conduct analyses
to find the best investment strategy.

4 In the operational research community, there are related terms such as sensitive
analysis and post-optimality [7].
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4 A New Model for Bottleneck

In this section a new definition for bottleneck and a new model for removing bot-
tlenecks (investment) is proposed that addresses limitations listed in Section 3.

Each constraint gi in a real-world optimization problem usually models not
only the availability of resources, but also other specifications of resources such
as rates and capacities. Each of these specifications is encoded in a coefficient in
the constraints. Accordingly, we propose a new definition for bottleneck:

Definition 1. A bottleneck is a modifiable specification of resources that by
changing its value, the best achievable performance of the system is improved.

Note that this definition is a generalization of the definition of bottleneck
in [13]: “a set of constraints with positive average shadow price is defined as
a bottleneck”. In fact, the definition in [13] concentrated on RHS only (it is
just about the average shadow price) and it considers a bottleneck as a set of
constraints, while our definition is based on any modifiable coefficient in the
constraints (from capacity, to rates, or availability) and it introduces each spec-
ification of resources as a potential bottleneck. As an example, based on our
definition, the operational rate of trucks can be a bottleneck, while according to
the definition in [13], this is not possible 5 (see Limitation 2 in Section 3). Of
course the set of all modifiable specifications need to be provided by the user.

According to the proposed bottlenecks definition, in order to invest on a part
of a system to achieve maximum improvement of the objective of that system,
not only RHS of all constraints should be assessed, but also all modifiable spec-
ifications in constraints need to be processed (e.g., tuning up trucks rather than
buying new trucks) for potential changes. Hence, it is clear that the earlier
methodologies based on ASP were not able to process all opportunities for re-
moving bottlenecks and investments to maximize improvement in the objective
function (see Limitation 3 in Section 3).

We propose a new model to address the limitations of ASP for removing
bottlenecks and finding the best way of investment. We define the vector li
which contains all modifiable specifications in the constraint gi. For any COP in
the form of eq. 1, we define a Bottleneck COP (BCOP) as follows:

find x and l s.t. z =

{
max(f(x, l))

min(B(l))
subject to gi(x, li) ≤ 0 for all i (5)

where l is a vector (l might contain continuous or discrete values) which contains
li for all i and B(l) is a function that calculates the cost of modified specifications
of resources coded in the vector l. Note that in the linear case, li = {ai, bi}
where ai is the ith row of the matrix A in eq. 2. If we consider li = {bi} and

5 One can argue that the operational rate is another constraint that can be modeled
by a new variable (g4 : v = 100 in eq. 4). However, if this constraint is added to the
definition of the problem then constraint g1 becomes non-linear (g1 : 2000y−vx ≤ 0)
which then is not suitable for ASP.
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Fig. 2. The impact of an investment (B) on the achievable objective value f (max-
imization is the goal): positive/negative investments (reduction of resources) usually
results in an increase/decrease in the best achievable objective value

gi(x) = aix− bi (linear constraints) then eq.5 can express ASPi. Figure 2 shows
that, if all pieces of equipment are sold, the best achievable objective value is
zero (f = 0) because nothing can be produced anymore (this is called “objective
break” point in the figure), that is the same as the selling shadow price [9]. The
“cost cross” point shows the point where the best objective value is achieved
with the current specification of resources (B = 0). The point “bottleneck free”
is the point where the optimum solution of the search space is inside the feasible
region. From a practical point of view, in this situation, no matter how the
decision maker invests, the profit is not improved any more. Note also that
sometimes the amount of investment up to some value might not change the
best achievable objective value. As an example, any investment from B1 to B2

does not result in any improvement in the objective value.
Let us assume that the associated solution to the point (f1, B1) is x

′ and l′.
This solution can be interpreted as if the decision maker invests B1, the best
way to spend this budget is to change the specifications values to l′ (which costs
B1) and the best achievable objective value in this case is f1. Note that:

– a BCOP can be formulated for linear and non-linear systems,
– any modifiable specification of resources can be formulated in a BCOP in

the vector l and the values for this vector are examined by the solver,
– solutions for a BCOP contain best investment strategies for various budgets.

Any multi-objective optimization algorithm can be applied to solve a BCOP.
Also, as the specifications can be coefficients in the constraints, the constraints
become non-linear, which makes the problem non-linear so that linear program-
ming methodologies are not useful in solving this problem.

Let use assume that, in the example from Section 3, the decision maker can
budget $500,000 to improve the maximum loaded products per hours into the
trains. Also, the specifications that can be altered in the system are:

– the operation rate of the trucks can be increased up to 120 (i.e., l1 =
{100, 101, ..., 120}) for $100 per tph per truck,

– the capacity of trains can be increased to 2100, with the step size 20 (i.e.,
l2 = {2000, 2020, 2040, 2060, ..., 2100} tonnes) for $200 per ton per train,
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Fig. 3. Impact of an investment on the achievable objective value

– the number of trucks can be increased up to 40 (i.e. l3 = {19, 20, ..., 40}),
each truck costs $15,000,

– the number of trains can be increased up to 5 (i.e l4 = {2, 3, 4, 5}), each train
costs $100,000.

The BCOP for this example is written as:

find x and l such that z =

⎧⎪⎨
⎪⎩
max{l2y}
min{0.1l3(l1 − 100) + 0.2l4(l2 − 2000)+

15(l3 − 19) + 100(l4 − 2)}
(6)

subject to l2y − l1x ≤ 0, x ≤ l3, y ≤ l4

Note that B(l) = 0 for l = {100, 2000, 19, 2} (the current specification of
the resources). We can solve this problem by using two methods: changing the
value of RHS according to the ASP in eq. 4, or performing an exhaustive search
algorithm that solves BCOP in eq. 6. Note that only practically possible were
added to the list of solutions. Figure 3 shows the results.

It is clear that when BCOP is used more opportunities for investment are
examined, which can potentially result in higher benefits with smaller invest-
ments. As an example, with $135,000 investment, a solution with f = 2950 is
found by solving BCOP with l = {118, 2000, 25, 2}. However, the best solution
found based on the shadow price for $135,000 investment was only f = 2800 with
l = {100, 2000, 28, 2}. According to the solution of BCOP, if the decision maker
is going to invest $135,000, the best way of investment (leading to maximum
improvement in the objective function) is to buy 6 new trucks ($6× 15000) and
upgrade all trucks to carry 118 tph (18 tph tune up, which costs $18×100×25),
which all together costs $135,000. However, by using the shadow price calcula-
tions, the decision maker needs to buy 9 new trucks ($9×15000), which improves
the objective value to 2800. It is clear that better objective values can be achieved
by investing the same amount if we use BCOP.

5 An Evolutionary Algorithm for BCOP

In this section we propose two methods to solve BCOPs based on a multi-
objective genetic algorithm. As the first algorithm, we use a basic algorithm
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with tournament selection, one point crossover (pc = 0.9, set via some trials),
and uniform random mutation (pm = 0.3, set via some trials). Each individual
contains the vector l and all decision variables x. We call this first approach GA.

To handle multiple objectives, we use the following simple approach. Two
solutions x0 and x1 are compared based on G(x) =

∑m
i=1 max(g(x), 0), which

is known as constraint violation value. If G(x0) = G(x1) or G(x0) ≤ 0 and
G(x1) ≤ 0, then we use the dominance relation in multi-dimensional spaces
(if both are equal or non-dominating select one randomly, otherwise select the
dominating one). Otherwise, we select the solution that is better in terms of
constraint violation value (preferring smaller constraint violation values).

The second multi-objective algorithm GALP is based on GA. Here, the in-
dividuals contain only the vector l, and linear programming is used to find the
best vector x for each generated l.

We applied both methods to the problem defined in eq. 6 with 100 individuals
for 100 iterations (all non-dominating solutions found are reported in Fig. 4(a)).
It is clear that both evolutionary methods have found good approximations of
the Pareto front (computed by exhaustive search). It is also clear that (1) the
performance of the GALP is slightly better than that of GA, and (2) our basic
approaches outperform the established ASP based approach.

This means that both our approaches can be used to better plan the best
investment for industries. In the following, let us consider a second example,
this time from agriculture, to illustrate that our formulation is straight-forward
and that it can support the decision making processes in the real-world.

Second Scenario: Agricultural Allocation.3 A farmer owns 1,000 acres of more or
less homogeneous farmland. His options are to breed cattle, or to grow wheat,
corn, or tomatoes. Annually, 12,000 hours of labor are available. For simplicity,
we will assume here that these can be used at any time during the year, i.e.,
through hiring casual labor during seasons of high need, e.g., for harvesting.
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In the following, we list information regarding the profit, yield, and labor
needs for the four economic activities:

– cattle: $1,600/head profit, 0.25 heads/acre yield, 40 h/head annual labor
– wheat: $5/bushel profit, 50 bushels/acre yield, 10 h/acre annual labor
– corn: $6/bushel profit, 80 bushels/acre yield, 12 h/acre annual labor
– tomatoes: 50 cent/lb profit, 1,000 lbs/acre yield, 25 h/acre annual labor

It is required that at least 20% of the farmland that is cultivated in the process
is used for the purpose of cattle breeding, at most 30% of the available farmland
can be used for growing tomatoes, and the ratio between the amount of farmland
assigned to growing wheat and that left uncultivated should not exceed 2 to 1.

Now (and this is the challenging bit), the farmer can make certain investments
that can possibly increase the overall profit per year: (1) additional acres of
farmland can be rented at $200 per year, (2) additional labor can be hired at
$20 per hour, (3) a tomato packing machine can be rented for $5,000 per year,
which reduces 25 h/acre to 20 h/acres, (4) a “tomato grower’s licence” can be
bought for $10,000 per year, which increases the max ratio from 30% to 35%,
and (5) the value 0.25 heads/acre can be improved up to 0.7 heads/acres for
$10,000 (0.25 needs $0, 0.7 needs $10,000, and anything in between is linear).

The question now is: should the farmer invest, and if so, how? In Figure 4(b)
we show the results of the different approaches.6 Just as in the previous train
loading example, our evolutionary approach GALP that makes use of the BCOP
formulation clearly outperform the approach based on average shadow price. The
results of GALP are close to those of found by an exhaustive search. Note that
the approach based on average shadow price is not able to assess all cases for
investment, which makes GALP more appropriate to find best investment plan.
Note that in this example the methods were run for 1000 iterations.

6 Conclusions and Directions

In this paper we proposed a new definition for bottlenecks and a new model
to guide decision makers to make the most profitable investment. We did this
in order to narrow the gap between what is being considered in academia and
industry. Our definition for bottlenecks and model for investment overcomes
several of the drawbacks of the model that is based on average shadow prices:

1. It can work with non-linear constraints and objectives.
2. It offers changes to the coefficient matrix.
3. It can provide a guide towards optimal investments.

This more general model can form the basis for more comprehensive analytical
tools as well as improved optimization algorithms. In particular for the latter
application, we conjecture that nature-inspired approaches are adequate, due to
the multi-objective formulation of the problem and its non-linearity.

6 The construction of the BCOP formulation is straight-forward, and we omit it due
to space constraints. It is available on the above-mentioned website of our stories.



442 M.R. Bonyadi, Z. Michalewicz, and M. Wagner

Bottlenecks are ubiquitous and companies make significant efforts to eliminate
them to the best extent possible. To the best of our knowledge, however, there
seems to be very little published research on approaches to identify bottlenecks—
research on optimal investment strategies in the presence of bottlenecks seems to
be even non-existent. In the future, we will push this research further, in order to
improve decision support systems.We will design nature-inspired single-objective
and multi-objective algorithms with the goal to support decision makers to make
the best possible investments in their constrained systems.
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