
Master Thesis

Software Testing a Verification
System

By:

Mahmoud A. Bokhari

a1600329

Supervisor:

Markus Wagner

10 June 2015

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Motivation . 2

1.3 Challenges . 3

1.4 Contribution . 4

2 Background 5

2.1 Introduction . 5

2.2 Beam Search . 5

2.3 Code Instrumentation . 6

2.3.1 Static Instrumentation . 7

2.3.2 Dynamic Instrumentation 7

2.4 Verification Systems . 8

I

Software Testing a Verification System Mahmoud A. Bokhari

2.5 Deductive Verification Systems . 8

2.5.1 Proof Procedure . 9

2.5.2 Test Case Design . 10

2.6 Test Coverage . 11

2.7 Code Coverage Types . 11

2.7.1 Statement Coverage . 12

2.7.2 Branch Coverage . 12

2.7.3 Method Coverage . 13

2.7.4 Class Coverage . 13

2.8 Axiomatisation Coverage . 13

2.9 Summary . 14

3 Related Work 16

3.1 Introduction . 16

3.2 Code Coverage . 16

3.2.1 AgitarOne . 17

3.2.2 Cobertura . 17

3.2.3 EMMA . 18

II

Software Testing a Verification System Mahmoud A. Bokhari

3.2.4 eXVantage . 18

3.2.5 Jacoco . 18

3.2.6 JavaCodeCoverage . 19

3.2.7 JCover . 19

3.2.8 Jtest . 20

3.2.9 PurifyPlus . 20

3.3 Measuring Axiomatisation Coverage 23

3.4 Current Framework Analysis . 24

3.4.1 Maximising The Axiomatisation Coverage 24

3.4.2 The Search Approaches . 25

3.4.3 Issues . 25

3.5 Summary . 27

4 The Proposed Approach 28

4.1 Introduction . 28

4.2 Guidance Table . 28

4.2.1 Description . 29

4.2.2 Guidance Table Uses . 30

III

Software Testing a Verification System Mahmoud A. Bokhari

4.2.2.1 Log File Analysis 30

4.2.2.2 Guiding the Search 30

4.3 Test Case Generation . 31

4.3.1 Improved Test Generation 32

4.3.2 Reduction by Prediction . 32

4.3.3 Using a Hash Table . 33

4.4 Beam Search Approach . 35

4.5 Fast Beam Search Approach . 38

4.6 Summary . 40

5 Evaluation 41

5.1 Introduction . 41

5.2 Case Study: KeY System . 41

5.3 Experiment . 43

5.3.1 Experimental Setup . 44

5.3.2 Preliminary Experiment . 45

5.3.2.1 Results . 45

5.3.3 Major Experiment . 46

IV

Software Testing a Verification System Mahmoud A. Bokhari

5.3.3.1 Guidance Table Analysis 47

5.3.3.2 Code Coverage Results 48

5.3.3.3 Axiomatization Coverage Results 51

5.3.3.4 BeamSearchFastMinSet Analysis 55

5.4 Conclusions and Future Work . 58

Appendices 60

A Log File Example 61

V

List of Figures

2.1 Beam search algorithm’s search space 6

3.1 Discarding some individual axioms in the current framework. 26

4.1 Test case generation . 31

4.2 Reduction by prediction. 34

4.3 Improved test case generation. 35

5.1 KeY’s test case example. 43

5.2 Successful vs. unsuccessful replacements. 48

5.3 Replacement set’s sizes v.s. number of replacements 49

5.4 BeamSearchFastMinSet’s search solution example. 56

VI

List of Tables

3.1 The main features of code coverage tools. 21

3.2 Additional features of code coverage tools 22

4.1 Guidance table example . 29

4.2 The hash table method . 35

5.1 Preliminary axiomatisation coverage results 45

5.2 Code coverage vs. axiomatization coverage 50

5.3 Some classes within KeY tool. 50

5.4 Coverage statistics. The results for Approaches 1–5 are based on

reruns from [3]. 52

5.5 Successful vs. unsuccessful replacements: unique single axioms. . . . 53

5.6 Analysis: Equivalent sets found by each approach. 54

5.7 Successful vs. unsuccessful replacements: non-unique sets of axioms 55

VII

Abstract

The correctness of software verification systems is vital, since they are used to con-

firm that safety- and security- critical software systems satisfy their requirements.

Modern deductive verification systems need to understand their target software,

which can be done by using an axiomatisation base. It captures the semantics of

the programming language used for writing the target software. To ensure the cor-

rectness of a deductive verification system, it is necessary to validate both parts:

the implementation of the system and the axiomatisation base. As a result, it is es-

sential to increase the axiom coverage in order to verify its correctness. However,

even for verification engineers, manually creating test cases manually is a time

consuming and difficult task. We present a beam search approach to automati-

cally generate test cases by modifying existing test cases as well as a comparison

between axiomatisation and code coverage. Our results reveal several interesting

points. The overall coverage of the existing test suite can be improved by more

than 20%. Furthermore, our approach explores the search space more effectively

than existing approaches. In addition, our comparison between the axiomatisation

and code coverage criteria shows that there is no clear correlation between them.

Our results and some parts of this research report are accepted for publishing in

[7, 8].

Chapter 1

Introduction

1.1 Introduction

Although there are a vast number of books, scientific papers and proven method-

ologies in software testing, the field can still be considered more of an art than a

science. In fact, there is less known about testing than other software development

life cycle (SDLC) processes [20]. Software testing involves executing and assessing

software systems with the intent of discovering deeply hidden and elusive bugs.

This exploratory journey can be accomplished through the assistance of experi-

ence, proven methods, principled and well-studied testing strategies as well as gut

feelings.

One of the main goals of conducting software testing during the SDLC is to evaluate

a computer program’s attributes and capability to meet its required functionalities

according to its specifications. To achieve this goal with safety- and security-

critical systems, the software and/or some of its critical components must undergo

1

Software Testing a Verification System Mahmoud A. Bokhari

rigorous processes, including formal verification.

Generally speaking, the purpose of software verification is to prove or disprove the

correctness of software using formal or informal methods [20]. Examples of formal

methods that use mathematical approaches include model checking and deductive

verification [13, 15]. Because of the error-prone nature of manually applying such

methods, the need for auto-active verification software systems arises.

In order to prove or disprove a program, software systems following the auto-

active verification paradigm must understand their target programs, which can be

accomplished using the so-called axiomatisation base. Consisting of a large set of

axioms (typically hundreds of axioms), it carries the semantics of the programming

language used for writing the target programs [5].

1.2 Motivation

To ensure the correctness of verification tools, it is necessary to validate both parts:

the implementation of the tool, as well as the axiomatisation base. Only testing

the implementation is not sufficient, even if a high code coverage is achieved. For

example, it was noted in [5] that the axiomatisation coverage was as low as 1% for

some tests (for the given verification system), while code coverage was never less

than 25%. In other words, the used test suite exercises a certain amount of the

code, while it uses only a small number of “core axioms”. As a consequence, some

logical defects stay hidden within the axiomatisation unless it is fully exercised.

The work in [5] discovers two bugs in the axiomatisation as a result of the coverage

maximisation research.

Our motivation comes from the fact that it is essential to prove the correctness

2

Software Testing a Verification System Mahmoud A. Bokhari

of these types of software systems, particularly when they are used in practice.

More specifically, it is vital to evaluate the axiomatisation base because it is the

core component of verification systems [29]. Such verification can be completed

by maximising the proportion of axioms successfully used during the verification

process [5, 9]. However, due to the large number of axioms as well as the time

required to verify a program, it is a difficult task even for experienced test engi-

neers to manually create adequate test cases from scratch to maximise the axiom

coverage [29].

1.3 Challenges

This problem of maximising the axiomatisation coverage is challenging for iterative

search approaches due to two main reasons: the large number of axioms (typically

hundreds) and the time consuming verification process (sometimes minutes). In

addition, the latter reason also makes it unsuitable for population-based evolution-

ary algorithms or ant-colony optimization as they require many evaluations [2, 12].

Besides the time-consuming evaluation process, the vast number of infeasible ways

of creating test cases renders the problem inappropriate for disruptive approaches,

such as simulated annealing and even the simple (1+1) evolutionary algorithms.

In addition, the solution space for such a problem –maximising the axoimatisation

coverage– is massive. For example, the KeY verification system uses an axiomatisa-

tion base that contains 1,520 axioms [7]. Consequently, the search space contains

21520 possible solutions. Furthermore, valid solutions are scattered significantly

throughout the search space.

3

Software Testing a Verification System Mahmoud A. Bokhari

1.4 Contribution

After analysing the work of [29] to maximise the axiomatisation coverage using

five different variants of breadth-first and depth-first search methods, we observed

that there are some instances where the implemented search approaches ignore

valid solutions. Moreover, the approaches explore blindly the vast solution space.

Therefore, we propose an extension to the author’s framework –one that applies

two different search methods. The first one is a heuristic approach that involves

a learning process and is based on the beam search algorithm [14]; the second

method is a fast version of the first approach that heuristically eliminates minutes

and sometimes hours of the evaluation time. In addition, we have implemented a

tool that can be used to analyse the test logs and build a guidance table to inform

and guide our search approaches towards high coverage.

Our experimental results reveal interesting points. There is no clear correlation

between code and axiomatisation coverage; therefore, it is essential to focus on

maximising the axiom coverage to uncover hidden defects. In addition, our ap-

proach achieves axiomatisation coverage comparable to that of the union of five

previous approaches. Furthermore, the overall coverage has been improved by

24%.

4

Chapter 2

Background

2.1 Introduction

In this chapter, we briefly provide some background information, to facilitate the

reading of the next chapters.

2.2 Beam Search

Beam search is a heuristic search technique that has a similar exploration technique

to the breadth-first search (BFS) method. Figure 1 illustrates the mechanism used

for exploring a graph using the beam search approach. It expands the search space

by visiting only the most promising nodes in each level and discarding the rest.

Figure 2.1(a) shows the promising nodes in green and the non-promising nodes in

red. Its mechanism is unlike the BFS, which explores all nodes at each level [14].

In addition, the beam search technique requires domain information regarding the

5

Software Testing a Verification System Mahmoud A. Bokhari

solution space in order to determine the next best nodes to explore. As can be

seen in Figure2.1(b), using the beam search approach, the number of nodes to visit

is reduced by half.

(a) The graph’s nodes to be explored by the

beam search algorithm. Green nodes are

promising nodes, while the red ones are non-

promising nodes.

(b) Nodes chosen for explo-

ration. A 50% reduction in the

number of nodes.

Figure 2.1: Beam search algorithm’s search space

2.3 Code Instrumentation

During the test phase, test engineers and software developers need to know what

happens inside the system under test (SUT). To do so, they use techniques by

which valuable data can be collected in regards to the execution of the SUT. One

such technique is code instrumentation, which is the process of inserting several

code segments into the SUT [28]. These segments permit the collection of test

coverage data without changing the logical properties and the major functions of

the SUT. When the inserted code is executed, it generates data and dumps it into

a file for later use in producing reports. Using the generated data, a developer can

analyse the product’s performance, diagnose errors and focus on areas that need

6

Software Testing a Verification System Mahmoud A. Bokhari

additional attention.

2.3.1 Static Instrumentation

Static instrumentation is sometimes called source code instrumentation, which is

a technique for inserting instructions into the source code of the SUT before com-

piling it [28]. It can be only used when the source code is available and requires

recompilation of the SUT. After the instrumentation is complete, these extra in-

structions generate data to be used for testing and runtime analysis. Although it

increases the compilation and execution time, it is adaptable to a wide range of

processors and platforms as well as it produces accurate results [28].

2.3.2 Dynamic Instrumentation

Dynamic instrumentation can be categorised into two techniques: byte code and

on-the-fly instrumentations. Byte code instrumentation is a method of modify-

ing byte code files before the loading phase, while the on-the-fly instrumentation

technique starts working after the SUT is loaded.

To illustrate this process, the typical development phases of Java can be used as an

example [28]. The first phase occurs when a programmer writes the source code.

In the second phase, the source code has to be compiled into Java byte code, which

is known as a “.class” file format. This file contains the instructions to be executed

later in the execution phase. In the third phase, the Java Virtual Machine (JVM)

loads the byte code files and transfers them to the main memory. After the .class

files are loaded, JVM verifies these files using the byte code verifier. JVM assures

that they are valid and do not violate Java’s security policies. In the final stage,

7

Software Testing a Verification System Mahmoud A. Bokhari

the JVM executes the instructions.

Coverage tools that use the byte code instrumentation method modify the .class

files before JVM loads them. When on-the-fly instrumentation is used, the probes

are inserted into memory to monitor the SUT [28]. In other words, the SUT re-

mains unchanged; therefore, unlike the other techniques, there is no need to remove

these probes after the test is conducted. Moreover, no recompilation is needed in

dynamic instrumentation methods, while it is essential when static instrumenta-

tion is used. Finally, the availability of the source code is not required as no effects

are applied to it.

2.4 Verification Systems

A verification system takes a program and its specification as an input in order to

prove the program correctness with respect to its specifications. It uses different

formal verification methodologies such as formal model checking and deductive

verification. In addition, each methodology has its own processes for finding a

proof.

2.5 Deductive Verification Systems

Generally speaking, a deductive verification system transforms the software to

be verified into mathematical expressions and then proves its correctness. To

find a proof, it is important to provide the software’s requirement specifications.

The specification can be written in informal or formal language. A requirement

specification can be only limited to the safety. For instance, the software will

8

Software Testing a Verification System Mahmoud A. Bokhari

always execute without encountering a fatal error such as accessing an invalid

memory location or dividing by zero. Nevertheless, ensuring such a property is a

complex task [15].

For example, a bug was discovered within the Java standard library. It was linked

to the computation of the average of two integer numbers [21]. It occurs in some

binary search implementations when computing (i + j) / 2. For some very large

numbers i and j, the result might be become a negative number if the addition

overflows. As a consequence, such cases result in some fatal errors in accessing

array elements, which is accessing outside of the array boundaries. As can be

noted in this example, proving safety requires proving the absence of arithmetic

overflows, which sometimes includes checking other properties.

2.5.1 Proof Procedure

In deductive verification systems, axioms and calculus are used to derive the proof.

Axioms are a set of rules that helps the verification system to understand and

verify its target software. In other words, axioms encode the semantics of the

programming language that is used to write the software. On the other hand,

calculus is the implementation of the proof procedure, i.e. the steps for reaching

the proof.

In this research we concentrate on modern deductive verification systems that

follow the auto-active verification paradigm. In such systems, besides the program

to be tested, the specification as well as all relevant information for finding a proof,

such as loop invariants, is given to the verification tool right from the beginning

of the verification process.

9

Software Testing a Verification System Mahmoud A. Bokhari

We consider only system test in this research, i.e. the verification system is tested

as a whole. Although the correctness of a tool depends on the correctness of its

components and it makes sense to also test these components independently, not

all components are easy to test individually. For example, it is quite challenging

to test the verification condition generator separately as it is extremely difficult

to specify its correct behaviour. In addition, we only consider functional tests

that can be executed automatically, and therefore, user interface properties are

not considered.

2.5.2 Test Case Design

As is typical for verification tools following the auto-active verification paradigm,

we assume that a verification problem consists of a program P to be verified and

a requirement specification REQ that is added in the form of annotations to the

program. Typical annotations are, for example, invariants, pre-/post-condition

pairs, and assertions of various kinds. Besides the requirement specification, a

verification problem usually contains additional auxiliary annotations AUX that

help the system to find a proof. We assume that all auxiliary input such as loop

invariants are made part of the testing input, such that the test can be executed

automatically.

Possible outcomes of running a verification tool on a test P+(REQ ∪ AUX) (a

verification problem consisting of a program P , a requirement specification REQ ,

and auxiliary annotations AUX) are:

proved: A proof has been found showing that the program P satisfies REQ ∪

AUX .

not provable: There is no proof (either P does not satisfy REQ or AUX is not

10

Software Testing a Verification System Mahmoud A. Bokhari

sufficient); the system may provide additional information on why no proof

exists, e.g. by a counter example or by showing the current proof state.

timeout: No proof could be found given the allotted resources (time and space).

2.6 Test Coverage

In 1972, Dijkstra observed that software testing can be utilised to reveal the pres-

ence of bugs, but cannot be used to prove their absence [31]. Over the last four

decades, there has been rapid growth in the field of software testing. Furthermore,

researchers have discovered rigorous methodologies and have conducted formal ex-

periments. Meanwhile, software testing has been expanded to include software

verification and validation techniques.

In addition to Dijkstra’s observation, Goodenough and Gerhart made a break-

through in the software testing field, pointing out that the central question to be

answered in software testing is “What are the test criteria?” [31]. In other words,

a test criterion defines what constitutes an adequate test. As a consequence, this

area has become a major research focus, and several test criteria have been dis-

covered and used in the software industry, including code coverage measures [31].

2.7 Code Coverage Types

As mentioned above, a number of test coverage criteria have been discovered in

the field of software testing; one widely-used measurement is code coverage [31].

It helps testers to discover the code segments in the SUT that have been executed

during a test run as well as the dead code that has not been executed. It can also

11

Software Testing a Verification System Mahmoud A. Bokhari

be used to measure the quality of a test suite and to improve it to cover more code

segments.

2.7.1 Statement Coverage

Any written software consists of a sequence of statements [11]. A statement can

be declarative or executable. An example of a declarative statement is the #de-

fine and float statements in the C programming language. By comparison, an

executable statement can include if, while or assignment statements.

The statement coverage reports whether or not each statement has been executed

in the SUT. In other words, it calculates the ratio between the total number of

executed statements and the total number of all statements.

2.7.2 Branch Coverage

In control statements, such as if and switch statements, more than one execution

scenario may occur. Each scenario can be considered a branch that depends on

the conditions in the control statement from which it started. To consider the

branch as fully covered, all outcomes of its starting condition must be evaluated.

In other words, the conditions have to hold true using some test cases, and they

have to be false using the same or other test cases [19].

12

Software Testing a Verification System Mahmoud A. Bokhari

2.7.3 Method Coverage

Methods consist of several line of codes (LOC) that accomplish a specific task.

They sometimes take in data, process it and return the result. They can also be

called as required by other functions and programs. Method coverage is used to re-

port whether each method has been invoked during a test run. Since a method may

contain several exit points, keeping track of each method is essential in identifying

any dead code.

2.7.4 Class Coverage

Class coverage reports all covered classes during the test phase. In the object-

oriented programming paradigm, software is built up using one or more classes. A

class is the blueprint composing an object and it contains the object’s attributes

and actions. To be considered for class coverage, classes have to be executables.

Each class is counted as covered when it is loaded and initialised.

2.8 Axiomatisation Coverage

Even though measuring code coverage is an essential task in testing verification

systems to assess the quality of a test suite, it is not an adequate metric for

measuring how well the axioms are tested in a verification system [5]. For instance,

our experiment shows that while the axiomatisation coverage is as low as 0.32%, the

exercised code is 36%. As a result, it is important to maximise the axiomatisation

coverage.

13

Software Testing a Verification System Mahmoud A. Bokhari

To address this problem (the huge gap between axiom and code coverage), the

authors of [5] propose the notation of axiomatisation coverage in their research

work. It measures the amount of axioms used in a test suite during the testing of

a verification system. The major idea is to calculate the percent of axioms that

are successfully used to find the proof. An axiom is defined to be needed to verify

a program, if it is an element of a minimal axiom subset, by which the verification

system can find a proof. That is, if the axiom is removed from this subset, the

tool is no longer able to prove the correctness of the program.

Definition 1 ([5]) A test case P+(REQ ∪ AUX) covers the axioms in a set Th

if Th ` P+(REQ ∪ AUX) but Th ′ 6` P+(REQ ∪ AUX) for all Th ′ (Th.

2.9 Summary

This chapter presented several interesting topics. It started with the beam search

algorithm, which is the backbone of our approaches. It heuristically expands the

nodes within the search space by visiting only the promising nodes.

Verification systems are used to prove the correctness of a software product. One

type of such system is deductive verification systems that transform their inputs

into mathematical expression in order to prove it. A deductive verification tool

utilises an axiomatisation base to understands its input. The axiomatisation base

contains axioms that encode the semantic of the programming language used for

writing the input. The input consists of a program and its formal specification.

The output of the verification system in general is either the program is correct or

is incorrect.

14

Software Testing a Verification System Mahmoud A. Bokhari

In software testing it is important to define the test criteria. Code coverage is

considered an important criterion in software testing that must be taken into

consideration. It measure the exercised code in the SUT. It has several types

such as statement and branch coverage. Another example of test coverage is the

axiomatisation coverage. It is the process of measuring the exercised axioms during

the test phase.

In order to measure the code coverage, the SUT has to be modified. This can be

achieved through code instrumentation techniques: static and dynamic instrumen-

tation. The former modifies the source code by inserting special code segments

while the latter alters the SUT’s class files before or after they are loaded in the

main memory.

15

Chapter 3

Related Work

3.1 Introduction

In this chapter, the related work is presented. It is divided into three sections. The

first is devoted for the code coverage, while the related work of the axiomatisation

coverage is discussed in the second section. The analysis of the current framework

for measuring and maximising the axiomatisation coverage is presented in the last

section.

3.2 Code Coverage

To compute test coverage, software developers and test engineers use code coverage

tools to ensure all LOC in the SUT have been executed. These tools vary in their

methodologies and supported features. For example, some tools use source and/or

byte code instrumentation techniques. In addition, they range in terms of the type

16

Software Testing a Verification System Mahmoud A. Bokhari

of code coverage. For instance, EMMA [24] supports the statement, method and

class coverage, whereas, Jcover [25] supports all those types of coverage as well as

the branch coverage. The reporting techniques differ between each tool, however,

most of them produce file-based reports. Table 3.1 summarises the main features

of the tools, while Table 3.2 illustrates the additional features.

3.2.1 AgitarOne

AgitarOne is an integrated and comprehensive unit testing tool for Java software

[22]. It automatically creates Junit tests and observes the SUT’s behaviour, in-

cluding the code coverage. It uses dynamic instrumentation techniques to insert

probes into the SUT. It also supports the statement, method, class and branch

coverage. GUI reports are used in AgitarOne to show code coverage. It also re-

ports the complexity scores of methods and classes in the SUT, which in turn helps

developers concentrate on more complex components. Finally, it can be used to

assist in software debugging by providing snapshots and stack traces to identify

bugs and their causes.

3.2.2 Cobertura

Cobertura is an open source analyser for Java programs. It calculates the percent-

age of the executed code in the SUT [23]. It uses the byte code instrumentation

approach to monitor the SUT. It also reports on the statement and branch cover-

age. The styles of the generated reports are HTML and XML files.

17

Software Testing a Verification System Mahmoud A. Bokhari

3.2.3 EMMA

EMMA is an open source Java code coverage tool [24]. It uses byte code in-

strumentation approaches to insert probes into the SUT’s classes. Furthermore,

on-the-fly instrumentation techniques can be utilised in cases where the byte code

has already been loaded by the JVM. It also reports coverage in file-based reports,

such as HTML and XML files. These reports contain statement, method and class

coverage. Testers can define a coverage threshold; as a result, items with coverage

percentages less than the predefined threshold will be highlighted. It also provides

a special feature for merging coverage data obtained from different test runs.

3.2.4 eXVantage

eXVantage is a tool suite that provides code coverage analysis, debugging and

performance profiling [30]. It uses source code analysis for C and C++ software

and byte code instrumentation for Java programs. It also supports the statement,

method and branch coverage. It reports the code coverage in file-based reports

while providing its own GUI for displaying state-of-the-art reports. Finally, it can

be used for program profiling to detect heavily executed components of the SUT.

3.2.5 Jacoco

The Jacoco is an open source tool that provides coverage reports for Java software

[16]. It instruments the source code of the SUT. For source code analysis, it has

to be used with the Eclipse plug-in EclEmma [16]. In addition, it implements byte

code and on-the-fly instrumentation techniques. It also produces several report

18

Software Testing a Verification System Mahmoud A. Bokhari

formats such as HTML, XML and CSV for the statement, method, class and

branch coverage.

3.2.6 JavaCodeCoverage

The JavaCodeCoverage tool is a code analyser developed in the Indian Institute

of Technology. It uses a byte code instrumentation technique to evaluate Java

programs [18]. It has its own reporting system to produce code coverage reports,

including statement, branch, method and class coverage. In addition, it uses a

MySQL database management system to store all gathered data, thus extending

the utility of the tool to several other purposes. For instance, it stores test data

obtained by running each individual test case, which allows the tester to review

and improve it.

3.2.7 JCover

JCover is a code coverage measurement tool for Java programs [25]. It generates

statistical information on the code coverage of the SUT during the test process.

It supports statement, method, class and branch coverage. In addition, it can be

used with the SUT source and byte code. It generates several types of reports,

such as HTML, XML and CSV files while maintaining its own GUI for viewing

the coverage reports. Moreover, it has a unique feature, “coverage differencing”,

which can be used to analyse the coverage of test cases. In other words, it shows

whether the test cases are overlapping or disjointed, allowing a test engineer to

improve the test suite by removing any redundant test cases.

19

Software Testing a Verification System Mahmoud A. Bokhari

3.2.8 Jtest

With static and dynamic instrumentation techniques to monitor the SUT, Jtest is

a powerful analyser tool that encompasses those features as well as other features

[26]. In addition, it provides reports that include all coverage types; it also has

its own reporting system for displaying sophisticated reports while supporting file-

based reports, such as HTML. It checks the code against built-in and customised

rules for code errors, making it useful for detecting the most frequent errors made

by developers. Additionally, it manages code reviews by automating the review

preparations, notifications and tracking. In order to maximise branch coverage, it

automatically generates test cases in JUnit format to test each branch while the

SUT is running.

3.2.9 PurifyPlus

The IBM Rational PurifyPlus tool is a powerful solution for measuring code cov-

erage [27]. It supports both source and byte code instrumentation approaches.

Unlike the other tools, it only supports statement and method coverage. In terms

of the supported programming languages, it can be used with C, C++, Java,

Basic and all programming languages in the .net framework. Moreover, it has a

GUI-based reporting system to produce coverage reports. Similar to eXVantage,

it provides debugging and performance profiling.

20

Software Testing a Verification System Mahmoud A. Bokhari

Instrumentation Coverage Type Reporting

Tool

S
o
u
rc

e
co

d
e

B
y
te

co
d
e

O
n
-t

h
e
-fl

y

S
ta

te
m

e
n
t

co
v
e
ra

g
e

M
e
th

o
d

co
v
e
ra

g
e

C
la

ss
co

v
e
ra

g
e

B
ra

n
ch

co
v
e
ra

g
e

G
U

I

F
il
e

Agitar N N Y Y Y Y Y Y N

Cobertura N Y N Y N N Y N Y

EMMA N Y Y Y Y Y N N Y

eXVantage Y Y Y Y Y Y Y Y Y

Jacoco Y Y Y Y Y Y Y N Y

JavaCodeCoverage Y Y N Y Y Y Y Y Y

JCover Y Y N Y Y Y Y Y Y

Jtest N Y Y Y Y Y Y Y Y

PurifyPlus Y Y N Y Y N N Y N

Table 3.1: The main features of code coverage tools.

21

Software Testing a Verification System Mahmoud A. Bokhari

Tool

L
an

gu
ag

e

L
ic

en
se

Y
ea

r

J
u
n
it

T
es

t

D
eb

u
gg

in
g

A
ss

is
ta

n
t

O
th

er

Agitar Java Commercial 2010 Y Y
Classes

complexity scores

Cobertura Java Open source 2010 N N

EMMA Java Open source 2005 N N

Coverage threshold

Merging test

run reports

eXVantage C, C++ Commercial 2006 Y Y
Define heavily

used components

Jacoco Java Open source 2014 N N

Java Code Coverage Java Open source 2009 N N

MySQL support

for storing

historical data

JCover Java Commercial 2006 N N
Coverage

differencing

Jtest Java Commercial 2014 Y Y

Built-in and

customised rules

Code reviews

management

PurifyPlus
C,C++,

Basic.net
Commercial 2007 N Y

Table 3.2: Additional features of code coverage tools

22

Software Testing a Verification System Mahmoud A. Bokhari

3.3 Measuring Axiomatisation Coverage

The authors of [5] implement a framework that automatically executes test cases

for verification systems as well as calculating the axiomatisation coverage for the

given test suite. In addition, it uses five different variants of the breadth-first and

depth-first search approaches to increase the axiomatisation coverage. The five

approaches improve the coverage by 18

To compute the axiomatisation coverage for a test case P+(REQ ∪ AUX), the

procedure is as follows. In the first step, the verification tool finds a proof for the

test case using the complete axiomatisation base available. The framework gathers

information on resource consumption for each proof attempt, such as number of

proof steps and time needed. In addition, information on which axioms are used

to find the proof are recorded as set T .1

In the next step, the iterative reduction phase starts. In the reduction step, the

framework starts from an empty set M of covered axioms –sometimes called min-

imal set or mandatory set. For each axiom t in the set of initially used axioms

T , an attempt is made to prove the test case using all axioms in T except t, i.e.

M ∪ (T \ {t}). If the proof does not succeed, t is considered to be necessary and it

is added to the set M . Then, the axiom t is removed from T and the framework

starts the next iteration until T = ∅.

After each single iteration of this computation, the current set of axioms M is only

an approximation of the coverage of the test case, as not every applied axiom was

necessarily crucial for the proof process (for example, axioms can depend on each

other). The above procedure is repeated with M as input as long as the result

1“Used” does not imply that the application of the axiom was necessary to find the proof.

23

Software Testing a Verification System Mahmoud A. Bokhari

is different from the input. Eventually, this fixed-point algorithm finds the true

minimal set of axioms necessary to construct the proof.

3.4 Current Framework Analysis

In this section, we briefly discuss the current framework for measuring the axioma-

tisation coverage implemented by [5].

3.4.1 Maximising The Axiomatisation Coverage

The test coverage is increased by creating additional tests from the existing test

cases. This can be achieved by preventing the verification system from using cer-

tain parts of the axiomatisation base. Thus, the system is forced to find alternative

ways to construct a correctness proof for a given test case P+(REQ ∪AUX) using

only a subset of the total set of axioms. This subset of allowed axioms is referred

to as the whitelist WL. As a result of using such a mechanism, the test case

changes to a tuple of 〈P+(REQ ∪AUX),WL〉, of a program P with a requirement

specification REQ and auxiliary annotations AUX , and a whitelist WL.

The introduction of whitelists makes it possible to reuse existing test cases, which

can be achieved by modifying the WL for each program and its specification. This

is a big advantage over writing new test cases, which is a very time consuming

process, even for experienced verification engineers. Nevertheless, it cannot fully

replace the need to extend test suites through additional test cases.

For instance, let us consider axioms for bitwise XOR-operations or for certain

simplifications of inequalities. If a test suite does not contain test cases that

24

Software Testing a Verification System Mahmoud A. Bokhari

include such characteristics, those axioms will probably not be exercised using

that test suite even though many parts of the axiomatisation base will be reused

many times.

3.4.2 The Search Approaches

The authors of [5] implement five different search algorithms to explore axioms in

the whitelist WL. In the first approach, axioms in M are chosen to be dropped

from WL in a depth-first fashion. A random depth-first method is used where

the axioms in M are picked in a random order. Another technique is also used:

depth-first random step sizes. It randomly selects up to six axioms from M to be

dropped from WL. When a proof cannot be constructed using the current WL,

the step size is reduced by 50%. The last two search methods are the breadth-first

and random breadth-first approaches. The former explores the axioms in M in a

breadth-first fashion, whereas the latter randomly picks them to be dropped from

WL.

3.4.3 Issues

After analysing the current framework and its test log files, several major points

were observed. The search space is quite large, i.e. 2n, where n is the number

of axioms in the axiomatisation base. In addition, its valid solutions are notably

scattered. In other words, roughly 5-10% of a valid solution’s neighbours can

be considered valid solutions as well [29]. Furthermore, when using a heuristic

methodology, increasing the randomness in an unsystematic fashion reduces the

chance of finding a valid solution; moreover, it fails to guide the process of maximis-

25

Software Testing a Verification System Mahmoud A. Bokhari

Figure 3.1: Discarding some individual axioms in the current framework.

ing the axiomatization coverage. Although the third search approach, depth-first

random step sizes, increases the overall axiomatization coverage, the failure rate is

considerably high [29]. This high rate of failure is likely occurs due to the nature

of the search space, which requires a more structured mechanism to heuristically

explore it.

In addition, the log files indicate that some instances of replaced axioms were

not chosen to be dropped individually. In other words, after the first level of the

breadth-first search approach, newly-discovered axioms are not chosen for indi-

vidual dropping; instead, the approach explores it within the current level. For

example, assume the first minimal set M1 = {ax1, ax2, ax3} is used to find a proof

for a test case. The approach chooses each axiom of M to be replaced individually.

In the case where ax1 is successfully replaced by ax4, and the remaining axioms

cannot be replaced, the second minimal set M2 will be {ax2, ax3, ax4}. In the

following step, the approach will explore the next level of the search space, which

is the second level. The next set of axioms to be dropped is {(ax1, ax2), (ax1,

ax3), (ax1, ax4)}; figure 3.1 illustrates this example. As can be seen, the ap-

proach discards choosing ax4 to be dropped individually. Consequently, it reduces

26

Software Testing a Verification System Mahmoud A. Bokhari

the number of explored nodes, which might misguide the search for more axioms

to be covered.

3.5 Summary

For measuring the code coverage, there are several tools that can use static and/or

dynamic instrumentation. They produce reports in different styles: file-based

styles and GUI styles. The reports includes statement, branch, method and/or

class coverage.

In order to measure the axiomatisaion coverage, only the needed axioms must be

counted. In other words, the initial set of axioms T used in a proof construction

needs to be reduced. This can be achieved by dropping one axiom a time from

the and reprove the same test using the modified T‘. If T‘ successfully proves the

test case, that means only needed axioms remain in the T‘.

For maximising the axiomatisation coverage, the verification system is prevented

from using some parts of the axiomatisation base. This can be accomplished by

dropping some axioms from it. As a result, the system is forced to find alternative

ways to prove the given test case. Five different variants of breadth-first and depth-

first approaches are used to choose which axiom to be dropped. However, these

approaches are not informed, and therefore, the chances of dropping an appropriate

axiom is relatively high. As a consequence, valid solutions are ignored.

27

Chapter 4

The Proposed Approach

4.1 Introduction

In this section, we present our heuristic approach that uses a learning process to

guide the search.

4.2 Guidance Table

To efficiently handle such search space, we propose a new approach that uses a

Guidance Table (GT) to guide and inform the search. In this section, the GT and

its uses are described.

28

Software Testing a Verification System Mahmoud A. Bokhari

4.2.1 Description

The GT consists of the following: each found axiom in all minimal sets, its re-

placement sets if it is successfully replaced, the total number of successful uses for

each replacement set, the total number of all successful replacements and the total

number of unsuccessful replacements. All data is recorded for each axiom. Table

4.1 illustrates an example of the guidance table. It shows that ax3 was replaced

successfully four times: once by {ax5, ax6} and three times by {ax7}. It also

shows that {ax3} was unable to be replaced a single time.

Axiom Replacement Set
Successful

Times

Total of

Successful

Times

Total of

Unsuccessful

Times

ax1 {ax4} 1 1 0

ax2 0 0 1

ax3
{ax5, ax6} 1

4 1
{ax7} 3

Table 4.1: Guidance table example

In addition, this GT can be built off-line and on-the-fly. Initially, we implemented

the GT tool to generate guidance tables for each test case in the off-line mode.

Test log files for the current framework are used to build the GTs. Moreover, it

can merge all test cases’ GTs into one GT to make the search more accurate.

29

Software Testing a Verification System Mahmoud A. Bokhari

4.2.2 Guidance Table Uses

4.2.2.1 Log File Analysis

The major purpose of using the GT is to find equivalences between axioms.1 In

other words, it lists equivalent sets of axioms for each axiom or axiom sets. For

example, Table 4.1 depicts that ax3 has two equivalent sets of axiom, which are

{ax5, ax6} and {ax7}. It is worth mentioning that these two sets are only equiv-

alent to that axiom in four cases as it is shown in the table. Nonetheless, as they

are not completely equal to ax3, the first set could not replace ax3 in one instance.

What is more, the GT helps to find inconsistent cases. For instance, it has been

successfully used to identify the issue of escaping axioms in the current approach,

as mentioned in the previous section.

4.2.2.2 Guiding the Search

In addition, discovering relationships between axioms enables the proposed tech-

nique to find axioms that have a relatively large number of equivalent sets to guide

the search. Since our proposed method is based on the beam search technique,

which requires information regarding the search space, it is essential to construct a

table that can be used to inform and guide it towards promising nodes. Moreover,

the GT can identify irreplaceable axioms that have not been successfully replaced.

Avoiding these axioms improves the performance of the search process and the

framework.

1“Equivalence” is not strictly logical here, but regarding the tool’s capability to find a proof

in a different way.

30

Software Testing a Verification System Mahmoud A. Bokhari

4.3 Test Case Generation

It is essential to increase the number of test cases in order to maximise the axiom-

stisation coverage. Nevertheless, generating more test cases manually is a difficult

task, even for an experienced test engineer. To overcome this issue, the existing

test cases have to be reused in a special manner to automatically generate ad-

ditional test cases. In this research, we adapt the mechanism of maximising the

axiomatisation coverage in [5], as discussed in Section 3.4.1.

(a) A proof is found.

(b) A proof is not found

Figure 4.1: Test case generation

31

Software Testing a Verification System Mahmoud A. Bokhari

Figure 4.1 illustrates the process of test case generation, where Figure 4.1a shows

an instance of finding a successful proof and Figure 4.1b presents an example of

an unsuccessful attempt. As can be seen, the verification system runs on the

given test case to find a proof. In a case where the system successfully proves the

correctness of the test case, it reduces the initial set of used axioms T in the proof

to the set of covered axioms M . In the next step the framework picks an axiom

mi from M and drops it from the available whitelist WL. Hence, a new test case

is created.

After generating the new test case where the verifier runs it again. In case the tool

cannot prove it using the new WL, the last axiom mi is returned to the WL and

the next axiom mi is chosen.

4.3.1 Improved Test Generation

According to [5], the reduction phase is a time consuming process that can take

several minutes and sometimes even hours. Therefore, we enhance the test case

generation by making it faster through additional steps. Two independent ap-

proaches have been implemented: one predicts which axioms to be dropped during

the reduction phase, while the other tries to skip the whole phase.

4.3.2 Reduction by Prediction

In a preliminary experiment we have conducted in [6], it was observed that some

axioms tend to be dropped frequently. To some extent, this can help to predict

which axioms are more likely to be excluded in the reduction phase. As a result,

the framework can be improved by extracting those axioms before the phase starts,

32

Software Testing a Verification System Mahmoud A. Bokhari

as it takes sometimes minutes up to hours to evaluate each set after each reduction

iteration.

The used procedure is illustrated in Figure 4.2 and is as follow. At the begin-

ning, the GT tool creates the axioms’ removal frequency table. It contains each

found axiom in previous test runs and the total number of how many times it

was identified as “not needed”. In a new test run, the verification tool runs the

test case. In the case where the tool finds a proof, the initial set of axioms T is

explored, before the reduction phase starts. Each axiom ti ∈ T that has a removal

frequency greater than a predefined threshold will be removed from T . Finally,

after examining all T’s elements, the reduction phase starts on the remaining set

of axioms.

The threshold is defined using a greedy technique. Initially it starts with a small

number for removing a large number of axioms as possible. Nevertheless, removing

“too many” axioms may sometimes fail the proof procedure. This is because some

of them turned to be mandatory axioms in some test cases. Thus, the threshold

increases gradually to overcome this issue.

4.3.3 Using a Hash Table

In order to reduce the computation time, we utilise some additional information

obtained by the GT tool from previous test runs. For each test case TC , the GT

tool collects and stores all of the initially used axiom sets T and their reduced

mandatory sets of axioms M . In addition, it arranges these sets to speed up the

whole testing process. This can be done by mapping each TC and T to their

corresponding M . As a result, the tool generates a hash table where the keys are

pairs of 〈TC ,T 〉 and the value is M . Table 4.2 shows an example of the hash

33

Software Testing a Verification System Mahmoud A. Bokhari

Figure 4.2: Reduction by prediction.

table.

By introducing this hash table method, the framework can skip the reduction

phase for any previously found T for the test case in progress. Figure 4.3 shows the

improved process. After the verification tool finds the initial used set of axioms T ,

it checks whether T is found in the hash table, if so, it retrieves its corresponding M

and tests it to ensure its validity, otherwise, the tool starts the reduction phase. It

is worth mentioning that testing the retrieved M is important, since the verification

tool may undergo some modifications that affect the proof procedure.

34

Software Testing a Verification System Mahmoud A. Bokhari

Key<TC, T> Value<M>

Test Case

Used Set

of Axioms

T

Mandatory Set

of Axioms

M

tc1 r1 m1

tc1 r2 m2

tc2 r3 m3

....

tci rj mk

Table 4.2: Mapping each test case and each initially used set of axioms to a

mandatory set.

4.4 Beam Search Approach

Algorithm 1 illustrates our informed beam search. As can be seen at the first stage,

the GT is initialised and sorted by the values of the total successful replacement

times. Then, the initial set of used axioms T for proving the test case TC —in the

form of 〈P+(REQ ∪ AUX),WL〉—is obtained by running the verification tool on

TC . If no proof can be constructed, the method terminates. One the other hand,

in the case of a proof can be constructed, we reduce the set T to a minimal set

M .

In the next stage, the GT is used to fill the promising node list that is used for

selecting the best nodes to explore. It includes all axioms that are found in M as

well as in GT , nonetheless, in some cases, an axiom may not be found in the GT ,

which means it is a newly covered axiom. Furthermore, these axioms must have

relatively high successful replacement rates. Finally, axioms that have not been

35

Software Testing a Verification System Mahmoud A. Bokhari

Figure 4.3: Improved test case generation.

replaced are stored in the discarded list to be avoided in the search process.

In the subsequent stage, where the axioms are not found in the GT , the method

adds them to the promising node list. This step is considered to guarantee that all

new axioms have to be dropped from the WL. As a result, new equivalent axioms

may get covered, which increases the chances of maximising the coverage.

In the final stage, the promising list is sorted by each axiom’s successful replace-

ments in descending order, then the method starts exploring the promising axioms.

We do this by dropping2 one axiom at a time from the available axiomatization

base (i.e. WL), and then re-running the proof procedure using the shorter WL

(Step 1). As a consequence, a new test case is generated.

Creating test case using such a mechanism can lead to an increase in the over-

all axiomatisation coverage. Preventing the verifier tool from using the complete

axiomatisation base will force the tool to find alternative ways “axioms” for con-

structing a new correctness proof. Thus, new axioms are used, which increases the

coverage.

2Drooping an axiom does not mean deleting it from the axiomatisation base in this context.

It means forbidding the verifier from using it to construct the new proof.

36

Software Testing a Verification System Mahmoud A. Bokhari

Algorithm 1: BeamSearch
Data: GT: guidance table (sorted by successful replacements.)

Data: TC: test case 〈P+(REQ ∪AUX),WL〉.

Data: T: initially used set of axioms during the proof.

Data: M: minimal set of axioms needed for finding the proof.

Data: WL: axiomatization base used by the verification tool.

Data: PromisingNodeList: list containing the most promising nodes.

Data: DiscardedList: list containing the discarded nodes.

Result: union of all minimal lists.

1 T = Run(TC); /* run the verification tool */

2 if TC is not Proved OR Timeout then

3 Stop;

4 else

5 M = Reduce(T);

6 Add M to result; /* add the newest minimal list */

7 foreach axiom in M do

8 if GT contains axiom then

9 if axiom in GT has total successful time greater than 0 then

10 Add axiom to PromisingNodeList;

11 else

12 Add axiom to DiscardedList;

13 end

14 else

15 Add axiom to PromisingNodeList; /* adding new axiom, since it has

not been in the GT so far */

16 end

17 end

18 sort(PromisingNodeList); /* by total replacements (descending) */

19 foreach axiom in PromisingNodeList do

20 Drop axiom from current WL;

21 Repeat from Step 1;

22 end

23 end

24 return result;

37

Software Testing a Verification System Mahmoud A. Bokhari

4.5 Fast Beam Search Approach

The BeamSearchFastMinSet approach has two main parts: (1) it effectively tries

to quickly re-discover the previously found minimal sets M , and (2) it constructs

the promising list to inform the search. Algorithm 2 illustrates only the first part,

as the second part (i.e. building the promising list) has already been discussed in

Section 4.4.

As can be seen, the set T of axioms used in a proof is obtained by running the

verification tool on the test case TC using the whitelist WL. Additionally, the

approach looks for the corresponding minimal set M from the hash table HT ,

which maps each TC and T to M .

In the next stage, when M is found, the BeamSearchFastMinSet approach reruns

the tool, but this time the WL is replaced by the corresponding M 3 to ensure the

validity of M . It is worth mentioning that we add this step, as the verification

tool may undergo some modifications that affect the proof procedure. Then, the

BeamSearchFastMinSet approach uses the valid M for building the promising list.

However, in case the HT does not contain such T (i.e. it is new, or M is not

valid), the approach continues its job as BeamSearch, by reducing T to a new

minimal set M and then constructs the promising list.

It can be noted that using BeamSearchFastMinSet significantly reduces the testing

time by eliminating the time needed for reducing T to M . Although Beam-

SearchFastMinSet runs the verification tool twice, it is still considerably faster than

the complete reduction of T to the minimal set M , since the later can require

dozens or even hundreds of verification attempts.

3which was a successful reduction at least once before

38

Software Testing a Verification System Mahmoud A. Bokhari

Algorithm 2: BeamSearchFastMinSet

Data: HT: hash table ((TC, T), M).

Data: TC: test case 〈P+(REQ ∪AUX),WL〉.

Data: T: set of axioms initially used during the proof.

Data: M: minimal set of axioms needed for finding the proof

Data: WL: axiomatization base used by the verification tool

Result: union of all minimal lists

1 T = Run(TC); /* run the verification tool on TC */

2 if TC is not proved OR Timeout then

3 Stop;

4 else

5 if HT contains 〈TC, T 〉 then

6 M = Get M from HT by 〈TC, T 〉;

7 WL = M;

8 T = Run(TC) ; /* rerun to ensure M is valid */

9 if TC is proved then

10 Add M to result; /* add the newest minimal list */

/* construct promising and discarded lists as in BeamSearch */

11 else

// TC is not proved, run BeamSearch

12 end

13 else

// HT does not contain 〈TC, T 〉, run BeamSearch

14 end

15 end

16 return result;

39

Software Testing a Verification System Mahmoud A. Bokhari

4.6 Summary

This chapter discussed our methodologies for improving the process of generating

test case and maximising the axiomatisation coverage. Two methods are imple-

mented for fastening the reduction phase. The first one predicts which axioms are

mostly likely will be unneeded before the starting of the reduction phase. The

second method utilises a hash table. The key for this hash table consists of each

test case TC and each initial set of axioms used to prove that test case T, and its

value is the mandatory set of axioms M for that TC.

For maximising the coverage, a guidance table is utilised to inform two search

methods: BeamSearch and BeamSearchFastMinSet. The guidance table con-

tains special information collected from the test logs. The difference between the

search methods is the BeamSearchFastMinSet uses the hash table method to re-

duces the reduction time. The main idea of using the guidance table and these

search approaches is to navigate the solution space effectively. The two methods

expand the search space by visiting the promising nodes, which are identified by

the guidance table.

40

Chapter 5

Evaluation

5.1 Introduction

5.2 Case Study: KeY System

As the target for our case study, we have chosen the KeY tool [4], a verification

system for sequential Java Card programs. It was designed to integrate design,

implementation, formal specification and formal verification of a software product

as efficiently as possible. The main purpose of using KeY for complex tasks is to

minimise the cost of applying formal methodologies to an reasonable level [4].

The core component of the KeY system is the theorem prover for program logic

[1]. It consists of a variety of automated inference techniques, such as symbolic

execution of programs, first order reasoning, arithmetic simplification and first

order Java Dynamic Logic (Java DL), which can be considered a generalisation

of Hoare logic. In addition, unlike other verification tools, it combines all these

41

Software Testing a Verification System Mahmoud A. Bokhari

techniques to find a proof.

In KeY, the Java Modeling Language (JML) is used to specify the properties

about Java programs. JML is a powerful and popular specification language for

Java software [10]. It is based on the design by contract paradigm and therefore it

consists of pre- and post-conditions and class invariants. In addition, it provides

auxiliary annotations such as loop invariants. Furthermore, it supports modular

verification, i.e. proving one Java method at a time.

Following, we will briefly describe the workflow of the KeY system. Assuming one

method is chosen to be verified against a single pre-/post-condition pair. At the

beginning, the relevant parts of the Java program and its JML annotations are

translated into a sequent in Java DL, a multimodal predicate logic. Validity of

this sequent implies that the program is correct with respect to its specification

[7]. Proving the validity is done using the automatic proof strategies within KeY,

which apply sequent calculus rules implemented as so-called taclets.

The set of taclets provided with KeY captures the semantics of Java. Additionally,

KeY contains taclets that deal with first order logic formulas. The development

version of KeY as of August 16, 2012 contains 1,520 taclets and rules; we will refer

to these as axioms in the remainder of this article to facilitate reading. Note that

not all axioms are always available when performing the proof, as some exist in

several versions, depending on proof options chosen.

The result of a verification attempt in KeY is one of the following: the generated

Java DL formula is valid and KeY is able to find a correctness proof; or the

generated formula is not valid and the proof cannot be closed; or KeY runs out of

resources.

42

Software Testing a Verification System Mahmoud A. Bokhari

Figure 5.1: KeY’s test case example.

The test case in KeY is same as discussed in 2.5.2, which is the form of P+(REQ ∪

AUX). For example, let us consider the following test case for KeY in Figure 5.1.

It contains a simple Java program code in Lines 4-8, which represents P . The

post condition in line 11 represents the post-condition (AUX). The test goal is to

check if KeY correctly deals with a division by zero when a number a is divided

by itself.

5.3 Experiment

In this section, we will first describe the experimental setup. We will briefly look

into the information that our beam search uses before presenting and analyzing

the coverage results.

43

Software Testing a Verification System Mahmoud A. Bokhari

5.3.1 Experimental Setup

Our testing framework automatically executes the 319 test cases mentioned above

and measures the axiomatization coverage1. We also use the Emma tool version

2.0 to measure the code coverage [24]. It is worth mentioning that this section

discusses two separated experiments, one for each coverage criterion.

The KeY source distribution provides a test suite containing 319 test cases (as of

August 16, 2012) for testing the verification of functional properties. The com-

plexity of these test cases ranges from simple arithmetic problems to small Java

programs testing single features of Java, up to more complex programs and prop-

erties taken from software verification competitions.

This test and all subsequent runs are performed on Intel Xeon E5430 CPUs

(2.66GHz), on Debian GNU/Linux 5.0.8, with Java SE RE 1.7.0. The internal

resource constraints are set to twice the amount of resources needed for the first

proof run recorded initially. This allows for calculating axiom coverage in reason-

able time and ensures comparability of coverage measures between computers of

different processing power. Still, the computation of a single fix-point typically

takes minutes, and in a few cases even hours. Therefore, we limit the computation

time for each of the 319 test cases to 24 hours for each approach, which means an

investment of 0.87 CPU years per approach.

1The full code and the logfiles are available online http://cs.adelaide.edu.au/~optlog/

research/software.php.

44

http://cs.adelaide.edu.au/~optlog/research/software.php
http://cs.adelaide.edu.au/~optlog/research/software.php

Software Testing a Verification System Mahmoud A. Bokhari

5.3.2 Preliminary Experiment

We conducted a preliminary experiment, to resolve the issue of skipping some

axioms in the breadth-first search approach used in [5]. The implemented methods

are as follow:

1. A one-level breadth-first search method, that only explore individual axioms.

2. A complete breadth-first search method.

3. A naive search method that tries to drop all axiom in the whilelist.

4. The BeamSearch approach that uses the reduction by prediction method.

In addition, the log files from this experiment helped us to construct an accurate

guidance table that includes all possible individual axioms, and to conduct an in-

depth analysis that guided us to design and implement our hash table method that

minimises the reduction phase and improves the overall framework performance.

5.3.2.1 Results

Appraoch First Minimal Sets Total Covered Axioms

naive search 610 630

one-level breadth-first search 617 665

complete breadth-first search 596 666

BeamSearch with reduction by prediction method 612 691

Table 5.1: Preliminary axiomatisation coverage. The first minimal sets refer to

those found first by the approaches, which initially use all 1520 axioms.

Table 5.1 presents the axiomatisation coverage achieved by the four approaches. As

expected, the BeamSearch with reduction by prediction method outperformed

45

Software Testing a Verification System Mahmoud A. Bokhari

the other three approaches by covering 691 axioms. It effectively covered higher

number of axioms, owing to the use of guidance table and reducing the reduction

time. By minimising the processing time in the reduction phase, the BeamSearch

can expand more nodes within the search space.

Surprisingly, the number of covered axioms by the complete breadth-first search

and one-level breadth-first search approaches are almost the same. The former

was expected to cover significantly more axioms, as it managed to explore seven

levels of the solution space. This is because single axioms tend to be successfully

replaced more than sets of axioms, which in turn increases the chances of covering

new axioms. Furthermore, the breadth-first search mechanism expands the search

space blindly (i.e. works with no information regarding the solution space), which

increases risk of wasting the time limit “ 24 hours per test case” by exploring the

nodes that do not contribute to the coverage.

5.3.3 Major Experiment

We compare our informed beam-search approach to the different variants of un-

informed breadth-first and depth-first approaches reported in [29]. There, the

approaches followed steps similar to BeamSearch, however, the approaches are

not informed. While we make use of information learned in Step 18 of Beam-

Search, the other approaches explore the list in either breadth-first or depth-first

fashions.

Given a minimal set of axioms M for a given pair P+(REQ∪AUX), the approaches

try to remove axioms m ∈ M from the current whitelist WL (first iteration:

all 1,520 axioms). If the subsequent verification of 〈P+(REQ ∪ AUX),WL〉 is

successful, then the verification system has found an alternative path to prove the

46

Software Testing a Verification System Mahmoud A. Bokhari

correctness of the P . Consequently, a new minimal set M ′ can be found, which will

only contain the elements that are in WL, and it will contain previously uncovered

axioms. For the next iteration, M ′ will be the starting point. Effectively, we

iteratively check if some axioms can be replaced by others.

5.3.3.1 Guidance Table Analysis

Before our experiments, we built the guidance table for our beam search based on

re-runs of the five approaches in [29] as well as the approaches in the preliminary

experiment. This GT contains, amongst others, the following interesting infor-

mation. This step is mandatory, as otherwise our approach defaults to a simple

breadth-first search.

First, let us look at individual axioms. In Figure 5.2, we show for all covered

axioms the number of times that they have been successfully and unsuccessfully

replaced. The use of this data is not straightforward, since there is no specific

pattern. For instance, one of these axioms has 188 unsuccessful replacements,

while it is successfully replaced 36 times. Such axioms have to be moved towards

the end of the promising list, as, more often than not, they appear to be dead

ends. On the other hand, one axiom is successfully replaced 143 times, while it is

unsuccessfully replaced only three times. This makes it a good candidate for the

beam search.

Once an axiom is replaced, we can often see that it is replaced by a set of two

axioms or by even larger sets. Figure 5.3 shows how many different single axioms

are replaced by a set of axioms: the y-axis represents the number of sets while

the x-axis represents the replacement sets’ sizes. For example, 446 pairs of axioms

successfully replace a single axiom, and there is one case where one axiom is

47

Software Testing a Verification System Mahmoud A. Bokhari

Figure 5.2: Successful vs. unsuccessful replacements for each single axiom, shown

as positive and negative values. The axioms (along the x-axis) are sorted in de-

creasing order according to the number of successful replacements.

replaced by an enormous set of 63 axioms. In future work, we can study such

cases in order to identify equivalent sets of axioms. Moreover, they can help us

to improve the framework by restricting the number of times that we replace that

one axiom in the future, as doing so may decrease the execution time for the proof

procedure.

5.3.3.2 Code Coverage Results

We ran KeY on the 319 test cases and measured the code coverage using the

EMMA tool version 2.0 [24]. It is worth mentioning that the reduction phase was

disabled during the test. As a result, the number of axioms used to prove the test

cases is slightly different to those in the first minimal sets shown in Table 5.4.

Achieving high code coverage in software testing is of great importance in evalu-

ating the test suite. Nevertheless, in verifying deductive verification systems, our

48

Software Testing a Verification System Mahmoud A. Bokhari

Figure 5.3: Replacement set’s sizes and number of replacements for single axioms

BeamSearchFastMinSet.

results show that the axiomatization coverage is essential. This is because although

in 295 test cases the LOC coverage is more than 34%, the axiomatization coverage

is less than 10%; moreover, 41 test cases have less than 1% of axiom coverage.

Table 5.2 shows a summary of the coverage details for the test cases.

It can be seen that the average LOC coverage is 37%, in contrast, the average

coverage in the axiomatisation is only 4.43%. Most of the test cases exercised

nearly the same proportion of the code, as the standard deviation for the LOC is

relatively small 2.5%. On the other hand, there are fluctuations in the amount of

axioms covered by the test suite. This is due to the logical properties within each

test case.

In addition, some test cases managed to exercise 89% and 44% of the class and

LOC coverage, respectively, which is the maximum LOC coverage; nonetheless,

they could not cover even 17% of the axioms individually. In short, there is no

clear correlation between the exercised code and the axioms used in the proof

49

Software Testing a Verification System Mahmoud A. Bokhari

Test Cases
Code Coverage Axiomatization Coverage

Class Coverage Line Coverage Number of Axioms Axiom Percent

standard key-java dl-arrayUpdateSimp 87% 35% 3 0.20%

.... 182 test cases

heap-SmansEtAl-Iterator list 83% 40% 62 4.08%

.... 134 test cases

heap-list-ArrayList concatenate 85% 44% 255 16.78%

min/max 81%/89% 34%/44% 3/255 0.2%/17%

meanstandard deviation 85%1.9% 37%2.5% 6752 4.43%3.4%

union 90% 51% 691 45%

Table 5.2: Code coverage vs. axiomatization coverage. Sorted by axiom percentage

in descending order.

Class Method Coverage Line Coverage

Taclet 66% 62%

TacletBuilder 61% 47%

Proof 54% 50%

CompoundProof 0% 0%

Table 5.3: Some classes within KeY tool.

construction stage.

The overall axiomatization coverage—as expected—is low at only 45%. Addi-

tionally, the LOC coverage is only 51%, which is significantly less than the 85%

recommended by the software testing literature (see e.g. [31]). Though the class

coverage reached 90%, after we analysing the coverage outputs using the EMMA

tool, we observe that many classes are only partially covered. This includes classes

that appear to be crucial for the proof procedure: the LOC coverage there ranges

from 62% down to even 0% (see Table 5.3 for some examples).

50

Software Testing a Verification System Mahmoud A. Bokhari

5.3.3.3 Axiomatization Coverage Results

The coverage statistics of the different approaches are listed in Table 5.4. The

number 611 represents the result of the naive approach, where the full set of 1,520

axioms is used and no alternatives are sought. This is our base value.

We start with some general observations. First, each of the individual approaches

improves the total coverage over the first minimal sets by about 12–18% each.

Our BeamSearchFastMinSet approach achieves the highest individual improve-

ments among the approaches.

When considering all the approaches together, the initial coverage of about 611

axioms has been increased to a total of 755 axioms through the use of whitelists.

This means that all approaches together has improved the achievable coverage

autonomously by about 24%, and that is without requiring a verification engineer

to write a single new test case.

It is an interesting coincidence that our BeamSearchFastMinSet achieves a total

coverage of 722 axioms, which is identical to the coverage achieved by the first

five approaches together. As we can see via the 755 axioms that are covered by

the union of all seven approaches, our beam search not only cover most of what

the first five approaches cover, but it also covers additional 33 axioms. It appears

that the combination of the GT and the fast reduction (when available) allows it

to search more effectively than the previous approaches.

Let us now investigate the differences between the approaches. First, by using

our GT tool, we obtain the number of times that a single axiom is successfully

replaced. The results are shown in The result presented in Table 5.5 clearly show

the structural differences between the approaches. For example, the depth-first

51

Software Testing a Verification System Mahmoud A. Bokhari

axioms covered in D
e
p
t
h
-F

ir
st

S
e
a
r
c
h

R
a
n
d
o
m

D
e
p
t
h
-F

ir
st

S
e
a
r
c
h

G
r
e
e
d
y

B
r
e
a
d
t
h
-F

ir
st

S
e
a
r
c
h

R
a
n
d
o
m

B
r
e
a
d
t
h
-F

ir
st

S
e
a
r
c
h

U
n
io

n

A
p
p
r
o
a
c
h
e
s
1
–
5

B
e
a
m
S
e
a
r
c
h

B
e
a
m
S
e
a
r
c
h
F
a
st
M
in
S
et

U
n
io

n
of

al
l

se
ve

n

ap
p
ro

a
ch

es

the first minimal sets
611 611 610 613 609 615 611 612 638

(40%) (40%) (40%) (40%) (40%) (40%) (40%) (40%) (42%)

all minimal sets
701 699 688 687 684 722 692 722 755

(46%) (46%) (45%) (45%) (45%) (48%) (46%) (48%) (50%)

Table 5.4: Coverage statistics. The results for Approaches 1–5 are based on

reruns from [3].

approaches 1-3 have the smallest number of replacements of single axioms, which is

expected given their nature: they explore shorter whitelists first. The breadth-first

approaches 4-5, on the other hand, achieve significantly higher single replacements,

because they explore the replacement of single axioms first. Our beam search

achieves the highest number of replacements here, as it prefers the replacement of

single axioms, and considers single axioms when it comes across new ones in the

search. This has the advantage of utilising the guidance table; shorter keys are

more likely to be existent, and therefore of help. We will see this in the following.

Next, we obtain the number of equivalent sets found by each approach. Table 5.6

presents the total attempts, as well as the number of equivalent sets and their

percentages. As can be seen, the success rate is in favours BeamSearch with

44%. On the other hand, BeamSearchFastMinSet is the fourth at 21%, it comes

after the Random Breadth-First search and Breadth-First search with

37% and 34%, respectively. This is because BeamSearchFastMinSet eliminates the

reduction time for finding the minimal sets M , which in turn enables it to spend

52

Software Testing a Verification System Mahmoud A. Bokhari

successfully

replaced

single axioms

unsuccessfully

replaced

single axioms

total

% of

successfully

replaced

axioms

Depth-First search 29 230 259 11%

Random Depth-First search 26 235 261 10%

Greedy 21 218 239 9%

Breadth-First search 181 259 440 41%

Random Breadth-First search 193 267 460 42%

BeamSearch 211 97 308 69%

BeamSearchFastMinSet 231 90 321 72%

Table 5.5: Successful vs. unsuccessful replacements: unique single axioms.

more time exploring the search space. In addition, it is worth mentioning that the

number of the total attempts represents the sizes of each approach’s generated GT,

which shows that a large amount of information for the beam search is extracted.

In contrast, the number of equivalent sets for BeamSearchFastMinSet is the largest

amongst the algorithms. Moreover, there is a significant difference between our

beam search approaches and the breadth-first approaches Random Breadth-

First search and Breadth-First search, which achieve the fourth and fifth

highest numbers of equivalent sets. In total, all 74,219 unique test cases created by

all approaches are stored and are ready to be used for regression testing, currently

achieving a coverage that is 24% higher than that achieved by the 319 original test

cases.

Lastly, Table 5.7 shows the number of total replacements for all axioms made by

each search technique. As can be seen, unlike the all depth and breadth methods,

the BeamSearchFastMinSet and BeamSearch help us to identify more logical re-

lationships between the axioms. For example the former successfully finds 58,982

53

Software Testing a Verification System Mahmoud A. Bokhari

equivalent

sets
total

% of

equivalent

sets

Depth-First search 7,544 132,735 6%

Random Depth-First search 3,880 40,446 10%

Greedy 2,458 80,886 3%

Breadth-First search 9,037 26,733 34%

Random Breadth-First search 10,784 28,842 37%

BeamSearch 33,178 75,180 44%

BeamSearchFastMinSet 54,821 258,319 21%

Table 5.6: Analysis: Equivalent sets found by each approach.

replacements for different axioms which is greater than the total number of success-

ful replacements of the first five approaches combined together. This is due to the

capability of BeamSearchFastMinSet to eliminate the reduction time. Moreover, it

clearly shows that even though BeamSearchFastMinSet has heuristic information

and ability to considerably decrease the reduction time, the problem of finding po-

tential candidates within such a difficult search space makes it increasingly hard

to uncover more axioms. As a result, BeamSearch and BeamSearchFastMinSet

gives us a better understanding of the solution space as well as the KeY’s proof

procedure. This is of great help, as our tested system is a black box and we need

such information to improve our framework.

In addition, although the BeamSearchFastMinSet explored a vast number of nodes

in the search space, the actual total coverage is just half of the axiomatisation base.

In other words, the approach reaches a local optima. This is because the actual

programs in the test suite do not use the logic encoded in the rest of the axioms.

Thus, it is obvious that the current test suite needs some updates to include new

54

Software Testing a Verification System Mahmoud A. Bokhari

total

successful

replacements

total

unsuccessful

replacements

total

% of

successful

replacements

Depth-First search 7,973 135,655 143,628 6%

Random Depth-First search 4,034 39,015 43,049 9%

Greedy 2,544 81,171 83,715 3%

Breadth-First search 9,995 31,299 41,294 24%

Random Breadth-First search 11,008 30,598 41,606 26%

BeamSearch 36,084 60,646 96,730 37%

BeamSearchFastMinSet 58,982 244,506 303,488 19%

Table 5.7: Successful vs. unsuccessful replacements: non-unique sets of axioms

test cases. In other words, it is essential to manually create test cases that carry

different logical properties to the existing ones.

5.3.3.4 BeamSearchFastMinSet Analysis

Now let us look to how the BeamSearchFastMinSet approach explores the search

space. Figure 5.4 illustrates a small part of a medium size test case’s search space.

The runtime for executing this test case is approximately 13.5 hours.

At the beginning the KeY system starts the proof procedure using the 1,520 ax-

ioms. It successfully finds a proof for the given test case using 38 axioms. However,

only 31 axioms of them are mandatory axioms. Therefore, the first minimal set

M1 contains only these axioms.

Initially, the approach identifies four axioms to be dropped a2, a4, a5 and a10.

After excluding each axiom, the verification tool successfully manages to prove

the same test case. As a result, the tool finds four more Ms. Three Ms of them

result in an increase in the axiomatisation coverage, whereas the fourth one contain

55

Software Testing a Verification System Mahmoud A. Bokhari

Figure 5.4: Search Space Example: exploring the search space by the beam search

approach. Each node represents an axiom. Solid arrows indicate successful re-

placements while dashed arrows are used for unsuccessful replacements.

previously covered axioms. In Figure 5.4, the axioms in green shows the instances

where replacing these axioms increases the coverage. For example, after replacing

a2, a new M is found. It contains 32 axioms. Amongst these axioms, there is only

one new axiom a32. It is worth mentioning that in this example, one may consider

(a2 = a32), this is only true with the current available axiomatisation base that

KeY uses in its proving procedure, and it is capability to prove the given test

case in different ways. In addition, replacing a4 and a10 increases the coverage

by three more axioms. As a result, of replacing the three axioms, the coverage

increases from 31 to 35 axioms.

56

Software Testing a Verification System Mahmoud A. Bokhari

In the subsequent stage, the approach tries to identify new promising nodes to

drop together with the previous ones, i.e. it drops sets of axioms. It chooses seven

axioms in total from the second level; as a consequence, it creates eight different

sets. Only two sets are unsuccessfully replaced {a2, a17} and {a5, a27}. The red

node in Figure 5.4 represents an essential node that has not been replaced in all

test cases, i.e. its total successful replacement in the GT equals to zero.

On the other hand, two sets of the six successful replaced sets increase the coverage.

For instance, excluding both axioms {a2, a32} from the axiomatisation base, forces

the tool to use a different set of axioms; therefore another new M5 is found. In

addition, forbidding the tool from using the set of axioms {a2, a4} results in a

new M6, however, this time all its axioms are already covered in the previous Ms.

It is worth mentioning that our approach identifies the first four nodes without

trying to drop the 1520 axioms, which significantly reduces the time complex-

ity. Furthermore, in total, it tries only 35 replacements where 77% of them are

successful.

Summarising the results of this section, we make the following conclusions:

1. Through the use of the guidance table, BeamSearchFastMinSet and Beam-

Search operates more effectively. This allows us to identify more relation-

ships among the axioms to improve our framework for future runs.

2. Moreover, our results clearly show that even though BeamSearchFastMinSet

uses heuristic information and has the ability to decrease the reduction time,

the problem of finding potential candidates within such a difficult search

space makes it increasingly difficult to cover further axioms. Therefore, we

conjecture that we are getting increasingly close to the local optimum that

57

Software Testing a Verification System Mahmoud A. Bokhari

we can achieve with our current approach.

5.4 Conclusions and Future Work

In this research, we presented BeamSearch and BeamSearchFastMinSet for in-

creasing the axiomatization coverage in deductive verification systems, where a set

of axioms—logical rules that capture the semantics of a programming language—

is used to find a proof that a program satisfies its formal specifications. Our ap-

proaches automatically creates test cases by preventing the verification tool from

using previously covered axioms. Therefore, the system tries to find alternative

axioms to prove the program. In our situation, a test case consists of the verifiable

program, its requirements, and the allowed set of axioms. Our heuristic approach

involves a learning process where the beam search method uses a guidance table

that contains special historical data from previous runs. As a result, it explores

the search space more effectively than previous approaches that use uninformed

breadth-first and depth-first variants. Whilst successful in increasing the coverage

of our tested verification system, these uninformed techniques often generated in-

feasible solutions during their search, and they are not much directed towards an

actual increase of the coverage.

The experiments reveal several interesting insights. First, our approach achieves

a coverage comparable to that of the union of five previous approaches, when

given the same computation budget. Furthermore, the overall coverage has been

improved over the starting point by 24%. Second, the high number of unsuccessful

replacement attempts by our fast approach strongly indicates that we are getting

increasingly close to the local optimum of “maximum coverage” that we can reach

with our test case reuse.

58

Software Testing a Verification System Mahmoud A. Bokhari

Finally, we found there is no correlation between code and axiomatization coverage.

Although the code coverage reaches more than 34%, the axiomatisation coverage

is nearly 10%. Thus, it is essential to focus on maximizing the axiom coverage to

uncover hidden defects in the axiomatisation coverage.

We will continue our research in the following areas:

1. We plan to investigate the reasons why some axioms are not covered, amongst

others, using the help of developers of the verification systems. We will

systematically write specific test cases aimed to increase the axiomatization

coverage for specific axioms.

2. Once we reach a satisfactory axiomatization coverage, we will need to focus

on combinations of axioms. Failures in a variety of domains are often caused

by combinations of several conditions (see studies like [17]). We plan to

combine combinatorial testing with combinatorial search techniques. Then,

combinations of language features and axioms will be used to form complex

test cases. The knowledge gained from the work presented here will help us

to focus our efforts in comprehensive testing.

59

Appendices

60

Appendix A

Log File Example

In the following, an example of test log is presented. The used approach is the

breadth-first search. When operating the BeamSearchFastMinSet on the same test

case, the steps for the reduction is eliminated. Descriptive comments are added to

explain parts of the test case, these comments are in italics font style.

Axiomatisation Coverage

parameters: [standard key/java dl/arrayUpdateSimp.key, 1] case name, approach

number

reduceWithBlackList (0):[]

no excluded axioms (0)

<result>timeReportedFromKeY=188

time for finding the initial set of axioms in ms

new minimalSet can be found, UsedInProof.size=3 size of the initial set of axioms.

the following lines contain the output of the reduction phase. y for needed,

n for unneeded, t is the time needed for checking the axiom .

61

Software Testing a Verification System Mahmoud A. Bokhari

<result>Last checked: [closeTrue](needed=y, t=176); Needed: [closeTrue];

Remaining: [...]

<result>Last checked: [eq imp](needed=y, t=92); Needed: [closeTrue, eq imp]; Re-

maining: [...]

<result>Last checked: [simplifyUpdate2](needed=y, t=44); Needed: [closeTrue, eq imp,

simplifyUpdate2]; Remaining: [...]

<result>Last checked: [closeTrue](needed=y, t=176); Needed: [closeTrue]; Remaining:

[...]

<result>Last checked: [eq imp](needed=y, t=92); Needed: [closeTrue, eq imp]; Re-

maining: [...]

<result>Last checked: [simplifyUpdate2](needed=y, t=44); Needed: [closeTrue, eq imp,

simplifyUpdate2]; Remaining: [...]

here the reduction phase finishes, the output (M) is:

minimalSet number 1 found, total covered taclets = 3, Remaining (3):[closeTrue, eq imp,

simplifyUpdate2] reduceWithBlackList (0):[] time needed t=188

reduceWithBlackList (1):[closeTrue] one axiom is dropped from the whitelist

<result>timeReportedFromKeY=191

reduceWithBlackList (1):[eq imp] another axiom is dropped

<result>timeReportedFromKeY=209

dropping eq imp forced KeY to find another proof.

new minimalSet can be found, UsedInProof.size=5

... some skipped line for reduction ...

minimalSet number 2 found, total covered taclets = 5, Remaining (3):[close, impRight,

simplifyUpdate2] reduceWithBlackList (1):[eq imp] time needed t=98

reduceWithBlackList (2):[close, eq imp] Now dropping set of axioms

<result>timeReportedFromKeY=213

new minimalSet can be found,

UsedInProof.size=6

62

Software Testing a Verification System Mahmoud A. Bokhari

... skipped lines ...

Minimal sets found:4

[close, impRight, simplifyUpdate2]

[closeFalse, impRight, replace known right, simplifyUpdate2]

[closeTrue, eq imp, simplifyUpdate2]

[closeTrue, impRight, replace known left, simplifyUpdate2]

... end of the file ...

63

Bibliography

[1] Wolfgang Ahrendt, Bernhard Beckert, Daniel Bruns, Richard Bubel,

Christoph Gladisch, Sarah Grebing, Reiner Hähnle, Martin Hentschel, Mihai

Herda, Vladimir Klebanov, Wojciech Mostowski, Christoph Scheben, Peter H.

Schmitt, and Mattias Ulbrich. The key platform for verification and analysis

of java programs. In Dimitra Giannakopoulou and Daniel Kroening, editors,

Verified Software: Theories, Tools, and Experiments (VSTTE 2014), num-

ber 8471 in Lecture Notes in Computer Science, pages 1–17. Springer-Verlag,

2014.

[2] Thomas Back, David B Fogel, and Zbigniew Michalewicz. Handbook of evo-

lutionary computation. IOP Publishing Ltd., 1997.

[3] Bernhard Beckert, Thorsten Bormer, and Markus Wagner. Heuristically cre-

ating test cases for program verification systems. In Metaheuristics Interna-

tional Conference (MIC), 2013.

[4] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verifica-

tion of Object-Oriented Software: The KeY Approach, volume 4334 of LNCS.

Springer, 2007.

[5] Bernhard Beckert, Markus Wagner, and Thorsten Bormer. A metric for test-

64

Software Testing a Verification System Mahmoud A. Bokhari

ing program verification systems. In Tests and Proofs (TAP), volume 7942 of

LNCS, pages 56–75, 2013.

[6] Mahmoud Bokhari. Software testing a verification system, mini thesis. Mas-

ter’s thesis, Computer Science, University of Adelaide, 2014.

[7] Mahmoud Bokhari, Thomson Bomer, and Markus Wagner. An improved

beam-search for testing formal verification systems. In Proceedings of the

2015 Symposium on Search-Based Software Engineering, SSBSE ’15. Springer,

2015. (to be published).

[8] Mahmoud Bokhari and Markus Wagner. Improving test coverage of formal

verification systems via beam search. In Companion of the 2015 Conference

on Genetic and Evolutionary Computation, GECCO ’15. ACM, 2015. (to be

published).

[9] Thorsten Bormer and Markus Wagner. Towards testing a verifying com-

piler. In Int. Conference on Formal Verification of Object-Oriented Software

(FoVeOOS). Pre-Proceedings, pages 98–112. Karlsruhe Institute of Technol-

ogy, 2010.

[10] Daniel Bruns, Wojciech Mostowski, and Mattias Ulbrich. Implementation-

level verification of algorithms with key. International Journal on Software

Tools for Technology Transfer, pages 1–16, 2013.

[11] P.J. Deitel and H.M. Deitel. Java: How to Program. How to program series.

Pearson Prentice Hall, 2010.

[12] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimiza-

tion. Computational Intelligence Magazine, IEEE, 1(4):28–39, 2006.

65

Software Testing a Verification System Mahmoud A. Bokhari

[13] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey of auto-

mated techniques for formal software verification, 2008.

[14] Stefan Edelkamp and Stefan Schroedl. Heuristic search: theory and applica-

tions. Elsevier, 2011.

[15] Jean-Christophe Fillitre. Deductive software verification. International Jour-

nal on Software Tools for Technology Transfer, 13(5):397–403, 2011.

[16] Marc R. Hoffmann. Jacoco, 2014. accessed September 2014.

[17] D. Richard Kuhn, Dolores R. Wallace, and Albert M. Gallo. Software fault

interactions and implications for software testing. IEEE Transactions on Soft-

ware Engineering, 30(6):418–421, 2004.

[18] R. Lingampally, A. Gupta, and P. Jalote. A multipurpose code coverage

tool for java. In System Sciences, 2007. HICSS 2007. 40th Annual Hawaii

International Conference on, pages 261b–261b, Jan 2007.

[19] Aditya P. Mathur. Foundations of Software Testing. Addison-Wesley Profes-

sional, 1st edition, 2008.

[20] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software

Testing. Wiley Publishing, 3rd edition, 2011.

[21] Salvatore Ruggieri. On computing the semi-sum of two integers. Inf. Process.

Lett., 87(2):67–71, July 2003.

[22] Agitar Development Team. Agitar. Agitar Technologies, Cranston, USA,

2014. accessed September 2014.

[23] Cobertura Development Team. Cobertura, 2014. accessed September 2014.

[24] EMMA Development team. EMMA, 2006. accessed September 2014.

66

Software Testing a Verification System Mahmoud A. Bokhari

[25] Jcover Development team. Jcover. Man Machine System, 2009. accessed

September 2014.

[26] Jtest Development Team. Jtest Software. Parasoft, california, USA, 2012.

accessed September 2014.

[27] Purify Plus Development Team. Purify Plus. IBM, New York, USA, 2012.

accessed September 2014.

[28] Mustafa M. Tikir and Jeffrey K. Hollingsworth. Efficient instrumentation for

code coverage testing. SIGSOFT Softw. Eng. Notes, 27(4):86–96, July 2002.

[29] M. Wagner. Maximising axiomatization coverage and minimizing regression

testing time. In IEEE Congress on Evolutionary Computation (CEC), pages

2885–2892, July 2014.

[30] Qian Yang, J. Jenny Li, and David Weiss. A survey of coverage based testing

tools. In Proceedings of the 2006 International Workshop on Automation of

Software Test, AST ’06, pages 99–103, New York, NY, USA, 2006. ACM.

[31] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test coverage

and adequacy. ACM Computing Surveys, 29(4):366–427, December 1997.

67

	Introduction
	Introduction
	Motivation
	Challenges
	Contribution

	Background
	Introduction
	Beam Search
	Code Instrumentation
	Static Instrumentation
	Dynamic Instrumentation

	Verification Systems
	Deductive Verification Systems
	Proof Procedure
	Test Case Design

	Test Coverage
	Code Coverage Types
	Statement Coverage
	Branch Coverage
	Method Coverage
	Class Coverage

	Axiomatisation Coverage
	Summary

	Related Work
	Introduction
	Code Coverage
	AgitarOne
	Cobertura
	EMMA
	eXVantage
	Jacoco
	JavaCodeCoverage
	JCover
	Jtest
	PurifyPlus

	Measuring Axiomatisation Coverage
	Current Framework Analysis
	Maximising The Axiomatisation Coverage
	The Search Approaches
	Issues

	Summary

	The Proposed Approach
	Introduction
	Guidance Table
	Description
	Guidance Table Uses
	Log File Analysis
	Guiding the Search

	Test Case Generation
	Improved Test Generation
	Reduction by Prediction
	Using a Hash Table

	Beam Search Approach
	Fast Beam Search Approach
	Summary

	Evaluation
	Introduction
	Case Study: KeY System
	Experiment
	Experimental Setup
	Preliminary Experiment
	Results

	Major Experiment
	Guidance Table Analysis
	Code Coverage Results
	Axiomatization Coverage Results
	BeamSearchFastMinSet Analysis

	Conclusions and Future Work

	Appendices
	Log File Example

