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Abstract. The correctness of software verification systems is vital, since
they are used to confirm that safety and security critical software systems
satisfy their requirements. Modern verification systems need to under-
stand their target software, which can be done by using an axiomatiza-
tion base. It captures the semantics of the programming language used
for writing the target software. To ensure their correctness, it is neces-
sary to validate both parts: the implementation and the axiomatization
base. As a result, it is essential to increase the axiom coverage in order
to verify its correctness. However, creating test cases manually is a time
consuming and difficult task even for verification engineers. We present a
beam search approach to automatically generate test cases by modifying
existing test cases as well as a comparison between axiomatization and
code coverage. Our results show that the overall coverage of the existing
test suite can be improved by more than 20 %. In addition, our approach
explores the search space more efficiently than existing ones.
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1 Introduction

Formal verification is the act of proving or disproving that an algorithm or its
implementation is correct with respect to its formal specification. The formal
mathematical approaches include, amongst others, model checking, deductive
verification, and program derivation [4,7,12].

The correctness of the program verification systems themselves is impera-
tive if they are to be used in practice. In principle, instead of or in addition to
testing, parts of verification tools (in particular the axiomatization and the cal-
culus) can be formally verified. For example, the Mobius project [2], the LOOP
project [15], and the Bali project [18], all aimed at the development of fully ver-
ified verification systems. One may employ formal methods to prove a system or
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its calculus to be correct. But—as for any other type of software system—testing
and cross-validation are of great importance [3,10].

In our situation of testing formal verification systems, all tests have to be
programs (along with their formal specifications) that can be verified success-
fully, whether it is with or without human interaction. Due to their inherent
complexity, creating such test cases by hand is already a challenging problem
for experienced verification engineers. Currently, it is unknown how tests can be
generated automatically from scratch using existing methods.

A verification system consists of many testable components (e.g., parsers,
the user interface, proof procedures), and the so-called axiomatization is one of
them. It carries the formal definitions of the target program language, which
makes it a core component of the systems. The correctness of this component
is of outmost importance, especially when safety- and security-critical programs
are to be verified.

To ensure the correctness of program verification tools, it is necessary to vali-
date both parts: the implementation, as well as the axiomatization. Only testing
the implementation is not sufficient, even if a high code coverage is achieved.
For example, it was noted in [6] that there is a certain amount of “core code”
exercised by all tests, while there is only a small number of “core axioms” used
by many tests. Some logical defects stay hidden within the axiomatization unless
it is fully exercised. The work in [6] discovered two bugs in the axiomatization
as a result of the coverage maximization research.

Our goal is to increase the proportion of the axiomatization that is actively
used in successful verification attempts [6]. As a consequence, new bugs (“regres-
sions”) are more likely to be found in regression testing, when the implementa-
tion of the verification system (and its axiomatization) is changed. The prob-
lem is challenging for iterative search approaches due to the large number of
axioms (typically 100’s) and due to the time consuming verification process
(sometimes minutes), which also makes it unsuitable for population-based evo-
lutionary algorithms or ant-colony optimization as they require many evalua-
tions [1,13]. Besides the time-consuming evaluation process, the vast number
of infeasible ways of creating test cases renders the problem inappropriate for
disruptive approaches, such as simulated annealing and even the simple (1+1)
evolutionary algorithms. In [19] a collection of various breadth-first and depth-
first approaches with randomized components to this problem was investigated.
These approaches were not problem-specific in the sense that the search for the
next test case was completely uninformed. In contrast to this, we are using in
this article a beam search approach [8,9] that is informed by previous runs. We
do this in order to achieve two goals: (1) reduction of the likelihood to gener-
ate infeasible solutions, and (2) increase of the likelihood to cover previously
uncovered axioms.

First, we outline the specific problem in Sect. 2, and in Sect. 3 we formulate it
as an optimization problem. In the subsequent Sect. 4, we describe our informed
approach. We analyze our results and compare them with existing approaches
in Sect. 5. The paper concludes in Sect. 6 with a summary of key findings and a
description of potential future research.
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2 Target of Optimization: Program Verification Systems

In this article, we concentrate on modern verification systems that allow for
auto-active verification. In auto-active verification, the requirement specification
together with all relevant information to find a proof (e.g., loop invariants) is
given to the verification tool right from the start of the verification process—
interaction hereafter is not possible. While some tools such as VCC [11] and
Caduceus [14] allow only this type of interaction, other such as the KeY tool [4],
offer in addition an interactive mode for the proof construction.

Program verification tools have to capture the program language semantics
of the programs to be verified. In some tools (e.g., as with logical frameworks like
Isabelle/HOL [17]) these semantics are mostly stored as one huge axiomatization
or a set of calculus rules and separate from the actual proof system. At this end
of the spectrum of program verification systems, (at least) one rule is defined
per program language construct (e.g., control flow statements or evaluation of
arithmetic expressions) in order to conduct proofs about program correctness.
The task of the actual implementation part of the verification tool is then mostly
to apply these rules, respectively axioms.

We consider in this article system tests, i.e., the verification tool is tested as a
whole. Though the correctness of a tool, of course, depends on the correctness of
its components and it makes sense to also test these components independently,
not all components are easy to test individually. For example, it is possible (and
useful) to unit-test an SMT solver that is used by a tool. But the verification
condition generator is hard to test separately as it is very difficult to specify its
correct behaviour. In the following, we concentrate on functional tests that can
be executed automatically, i.e., user-interface properties are not considered.

As is typical for verification tools following the auto-active verification para-
digm, we assume that a verification problem consists of a program to be verified
and a requirement specification that is added in form of annotations to the
program. Typical annotations are, e.g., invariants, pre-/postcondition pairs, and
assertions of various kinds. If P is a program and A is a set of annotations,
then we call the pair P+A. Besides the requirement specification, a verification
problem usually contains additional auxiliary annotations that help the system
in finding a proof. We assume that all auxiliary input (e.g., loop invariants) are
made part of the testing input, such that the test can be executed automatically.

Possible outcomes of running a verification tool on a test P+(REQ∪AUX ) (a
verification problem consisting of a program P , a requirement specification REQ ,
and auxiliary annotations AUX ) are:

Proved: A proof has been found showing that the program P satisfies REQ ∪
AUX .

Not provable: There is no proof (either P does not satisfy REQ or AUX is not
sufficient); the system may provide additional information on why no proof
exists, e.g., by a counter example or by showing the current proof state.

Timeout: No proof could be found given the allotted resources (time and space).
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In the following, we are only considering test cases for which the intended
outcome is that KeY finds a proof given the allocated computational resources.

3 Problem Formulation

In this section, we present how we determine the amount of testing done, and
how we intend to improve it.

3.1 Axiomatization Coverage

Measuring code coverage is an important method in software testing to judge
the quality of a test suite. This is also true for testing verification tools. However,
code coverage is not an indicator for how well the declarative logical axioms and
definitions—that define the semantics of programs and specifications and that
make up an important part of the system—are tested.

To solve this problem, we use the notion of axiomatization coverage [6]. It
measures the extent to which a test suite exercises the axioms (that capture
the program language semantics) used in a verification system. The idea is to
compute the percentage of axioms that are actually used in the proofs for the
verification problems that make up a test suite. The higher the coverage of a
test suite is, the more likely it is that a bug that is introduced in a new version
of the verification system is discovered.

We use the following version of axiomatization coverage: the percentage of
axioms needed to successfully verify correct programs. An axiom is defined to be
needed to verify a program, if it is an element of a minimal axiom subset, using
which the verification system is able to find a proof. That is, if the axiom is
removed from this subset, the tool is not able anymore to prove the correctness
of the program.

Definition 1 ([6]). A test case P+(REQ ∪ AUX ) covers the axioms in a set
Th if Th � P+(REQ ∪ AUX ) but Th ′ �� P+(REQ ∪ AUX ) for all Th ′

� Th.

Note that, in general, the minimal set of axioms covered by a given verifica-
tion problem is not unique.

To compute an approximation of the axiom coverage for a test case
P+(REQ ∪ AUX ), the procedure is as follows. In a first step, we verify the
test case with the verification tool using the complete axiom base available.
Besides gathering information on resource consumption of this proof attempt,
information on which axioms are actually used in the proof are recorded as set
T .1 Then, the iterative reduction phase starts. In a reduction step, we start from
the empty set C of covered axioms. For each axiom t in the set of initially used
axioms T , an attempt to prove the test case using axioms C ∪ (T \ {t}) is made.
If the proof does not succeed, we consider t to be necessary and we add t to the
set C. Then, we remove axiom t from T and start the next proof iteration until

1 “Used” does not imply that the application of the axiom was necessary.
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T = ∅. After a single iteration of this computation, we repeat these operations
but this time on C, until no more axiom removal is possible without affecting
the ability to find a proof. As a result, this fixed-point algorithm finds a true
minimal set of axioms to construct the proof.

3.2 Maximizing Axiomatization Coverage

We increase the amount of testing done by generating additional tests from exist-
ing ones. We achieve this by preventing the verification system to use certain
parts of the axiomatization. Thus, we force the system to find alternative ways
of constructing a correctness proof for a given test case P+(REQ ∪AUX ), while
using only a subset of the total set of axioms. We will refer to this subset of
allowed axioms as the whitelist WL. Now, the notion of what a test case consti-
tutes actually changes: it becomes a tuple of 〈P+(REQ ∪AUX ),WL〉, of a pro-
gram P with a requirement specification REQ and auxiliary annotations AUX ,
and a whitelist WL.

The introduction of the whitelists allows us to reuse existing test cases, by
modifying the WL for each program and its specification. This is a big advan-
tage over writing new test cases, which is a very time consuming process even for
experienced verification engineers. On the other hand, our approach cannot fully
replace the need to extend test suites through additional test cases. For example,
take axioms for bitwise XOR-operations or for certain simplifications of inequal-
ities. Even though many parts of the axiomatization will be reused over and
over, it may not be possible to cover these, if the corresponding characteristics
are never found in any of the existing test cases.

4 Metaheuristic Approach

In the following, we describe the verification system that is the subject of our
study. Subsequently, we present our heuristic approaches to the problem. Note
that our approaches can be applied to the testing of further verification sys-
tems, if these can provide information on which axioms were used during the
construction of the proof; for example, this is the case for Microsoft’s VCC [11].

4.1 The KeY System

As the target for our case study we have chosen the KeY tool [4], a verifi-
cation system for sequential Java Card programs. In KeY, the Java Modeling
Language (JML) is used to specify properties about Java programs with the
common specification constructs like pre- and postconditions for methods and
object invariants. Like in other deductive verification tools, the verification task
is modularized by proving one Java method at a time.

In the following, we will briefly describe the workflow of the KeY system.
Let us assume the user has chosen one method to be verified against a single
pre-/postcondition pair. First, the relevant parts of the Java program, together
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with its JML annotations are translated to a sequent in Java Dynamic Logic, a
multimodal predicate logic. Validity of this sequent implies that the program is
correct with respect to its specification. Proving the validity is done using auto-
matic proof strategies within KeY, which apply sequent calculus rules imple-
mented as so-called taclets. For an in-depth introduction, we refer the interested
reader to [4]. The set of taclets provided with KeY captures the semantics of
Java. Additionally, it contains taclets that deal with first order logic formulas.
The development version of KeY as of 16 August 2012, contains 1520 taclets
and rules; we will call these axioms in the remainder of this article to facilitate
reading. Note that not all axioms are always available when performing a proof,
as some exist in several versions, depending on proof options chosen.

4.2 Algorithms

As stated above, we are aiming at maximizing the axiomatization coverage
through the creation of test cases 〈P+(REQ ∪ AUX ),WL〉. The test suite that
we will consider already contains pairs P+(REQ∪AUX ), such that we can focus
on the search for whitelists. This process can be very time consuming (several
hours) due to the reduction phases. Furthermore, it is very often the case that
infeasible whitelists are created, as they miss elements that are crucial for the
construction of the eventual proof. Even a very “careful” random generation of
whitelists is rarely successful. Therefore, we use an informed conservative app-
roach in which we attempt to use the knowledge gained so far.

Guidance Table. To efficiently navigate the search space, we propose a new
approach that uses a guidance table GT to guide and inform the search. This
GT consists of the following: each found axiom encountered in any minimal sets,
its replacement sets if it is successfully replaced, the total number of successful
uses for each replacement set, the total number of all successful replacements,
and the total number of unsuccessful replacements. All data is recorded for each
axiom. Table 1 illustrates an example of the guidance table: it shows that ax3
was replaced successfully four times; once by {ax5, ax6} and three times by
{ax7}. It also shows that it was not possible to replace {ax3}.

Table 1. Guidance Table example

Axiom Replacement Successful Total Successful Unsuccessful

Set Times Times Times

ax1 {ax4} 1 1 0

ax2 0 0 1

ax3 {ax5, ax6} 1 4 1

{ax7} 3 0
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The major purpose of using the guidance table is to find equivalences between
axioms.2 In other words, it lists equivalent sets of axioms for each axiom or axiom
sets. For example, Table 1 depicts that ax3 has two equivalent sets of axioms
which are {ax5, ax6} and {ax7}. It is worth mentioning that these two sets are
only equivalent to that axiom in four cases in total. However, as they are not
completely equal to ax3, the first set could not replace ax3 in one instance.

In addition, discovering relationships between axioms enables the proposed
technique to find axioms that have a relatively large number of equivalent sets
to guide the search. Since our proposed method is based on the beam search
technique, which requires information regarding the search space, it is essential to
construct such a table that can be used to inform and guide it towards promising
nodes. Moreover, the guidance table can identify irreplaceable axioms that have
not been replaced successfully. Avoiding these axioms improves the performance
of the search process and the framework.

BeamSearch Approach. Algorithm 1 illustrates our informed beam search.
As can be seen at the first stage, the GT is initialised and sorted by the values
of the total successful replacement times. Then, the initial set of used axioms
T for proving the test case TC—in the form of 〈P+(REQ ∪ AUX ),WL〉—is
obtained by running the verification tool on TC . If no proof can be constructed,
the method terminates. If a proof can be constructed, then we reduce the set T
to a minimal set M .

In the next stage, the GT is used to fill the promising node list that is used
for selecting the best nodes to explore. It includes all axioms that are found in
M as well as in GT , however, in some cases an axiom may not found in the GT
which means it is a newly covered axiom. Furthermore, these axioms must have
relatively high successfully replacement rates. Lastly, axioms that have not been
replaced are stored in the discarded list to be avoided in the search process.

In the subsequent stage, where the axioms are not found in the GT , the
method adds them to the promising node list. This step is considered to guar-
antee that all new axioms have to be dropped from the WL. As a result, new
equivalent axioms may get covered, which increases the chances of maximising
the overall axiomatization coverage.

In the final stage, the promising list is sorted by each axiom’s successful
replacements in a descending order, then the method starts exploring the promis-
ing axioms. We do this by dropping one at a time from the axiomatization base
WL and then re-running the proving procedure using the shorter WL (Step 1).
As a consequence a new test case might be generated, but this time an axiom
which has several logically equivalent sets of axioms has been removed from
it, which increases the chances of forcing the verification tool to use different
axioms.

BEAMSERCH
FastMinSet. In order to reduce the computation time, we use some

additional information obtained by the GT tool from the previous test runs.
2 “Equivalence” is not strictly logical here, but regarding the tool’s capability to find

a proof in a different way.
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Algorithm 1. BeamSearch
Data: GT: guidance table (sorted by successful replacements)
Data: TC: test case 〈P+(REQ ∪ AUX ),WL〉
Data: T: initially used set of axioms during the proof
Data: M: minimal set of axioms needed for finding the proof
Data: WL: axiomatization base used by the verification tool
Data: PromisingNodeList: list containing the most promising nodes
Data: DiscardedList: list containing discarded nodes
Result: union of all minimal lists

1 T = Run(TC) ; /* run the verification tool */
2 if TC is not Proved OR Timeout then
3 Stop;
4 else
5 M = Reduce(T);
6 Add M to result; /* add the newest minimal list */
7 foreach axiom in M do
8 if GT contains axiom then
9 if axiom in GT has total successful time greater than 0 then

10 Add axiom to PromisingNodeList;
11 else
12 Add axiom to DiscardedList;
13 end

14 else
15 Add axiom to PromisingNodeList; /* adding new axiom, since it has not

been in the GT so far */

16 end

17 end
18 sort(PromisingNodeList); /* by total replacements (descending) */
19 foreach axiom in PromisingNodeList do
20 Drop axiom from current WL;
21 Repeat from Step 1;

22 end

23 end
24 return result;

For each test case TC , the GT tool collects and stores all of the initially used
axiom sets T and their reduced minimal sets of axioms M . In addition, it
arranges these sets to speed up the whole testing process. This can be done
by mapping each TC and T to a set of M . As a result, the tool generates a hash
table where the keys are pairs of 〈TC ,T 〉 and the values are sets of M .

The approach BeamSearchFastMinSet has two main parts: (1) it effectively
tries to quickly re-discover the previously found minimal sets M , and (2) con-
structs the promising list to inform the search. Algorithm 2 illustrates only the
first part, as the second part (i.e., building the promising list) is already discussed
in BeamSearch Approach in Sect. 4.2. As can be seen, the set T of axioms used
in proofs is obtained by running the verification tool on the test case TC using
the whole white list WL. Additionally, the approach looks for the corresponding
minimal set M from the hash table HT .

In the next stage, when M is found, the BeamSearchFastMinSet reruns the
tool again, but this time the WL is replaced by the corresponding M (which was a
successful reduction at least once before), to ensure the validity of M . It is worth
mentioning that we add this step, since the verification tool may undergo some
modifications that affect the proof procedure. Then the BeamSearchFastMinSet

uses the valid M for building the promising list. However, in case the HT does
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Algorithm 2. BeamSearchFastMinSet

Data: HT: hash table ((TC, T), M)
Data: TC: test case 〈P+(REQ ∪ AUX ),WL〉
Data: T: initially used set of axioms during the proof
Data: M: minimal set of axioms needed for finding the proof
Data: WL: axiomatization base used by the verification tool
Result: union of all minimal lists

1 T = Run(TC) ; /* run the verification tool on TC */
2 if TC is not proved OR Timeout then
3 Stop;
4 else
5 if HT contains 〈TC, T 〉) then
6 M = Get M from HT by 〈TC, T 〉;
7 WL = M;
8 T = Run(TC) ; /* rerun to ensure M is valid */
9 if TC is proved then

10 Add M to result; /* add the newest minimal list */
/* construct promising and discarded lists as in BeamSearch */

11 else
// TC is not proved, run BeamSearch

12 end

13 else
// HT does not contain 〈TC, T 〉, run BeamSearch

14 end

15 end
16 return result;

not contain such T (i.e., it is new, or M is not valid), the BeamSearchFastMinSet

continues its job as BeamSearch, by reducing T to a new minimal set M and
then constructs the promising list.

As can be noted, using BeamSearchFastMinSet significantly reduces the test-
ing time by eliminating the time needed for reducing T to M . Although Beam-
SearchFastMinSet runs the verification tool twice, still it is considerably faster
than the complete reduction of T to the minimal set M , since the later can
require dozens or even hundreds of verification attempts.

5 Experimental Investigations

In this section, we will first describe the experimental setup. We will briefly look
into the information that our beam search uses, before presenting and analyzing
the coverage results.

5.1 Experimental Setup

Our testing framework automatically executes the 319 test cases mentioned
above and measures the axiomatization coverage3. We also use Emma tool ver-
sion 2.0 to measure the code coverage4. It worth mentioning that we run 2
separated experiments, one for each coverage criterion. For code coverage the
3 The full code and the logfiles are available online http://cs.adelaide.edu.au/∼optlog/

research/software.php.
4 www.emma.sourceforge.net (last accessed: 5 April 2015).

http://cs.adelaide.edu.au/~optlog/research/software.php
http://cs.adelaide.edu.au/~optlog/research/software.php
www.emma.sourceforge.net
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reduction phase is disabled during the test, and therefore the number of covered
axioms is slightly different to those in the axiomatization experiment.

This test and all subsequent runs are performed on Intel Xeon E5430 CPUs
(2.66 GHz), on Debian GNU/Linux 5.0.8, with Java SE RE 1.7.0. The internal
resource constraints are set to twice the amount of resources needed for the
first proof run recorded initially. This allows for calculating axiom coverage in
reasonable time and ensures comparability of coverage measures between com-
puters of different processing power. Still, the computation of a single fix-point
takes typically minutes, and in a few cases even hours. Therefore, we limit the
computation time for each of the 319 test cases to 24 h for each approach, which
means an investment of 0.87 CPU years per approach. We compare our informed
beam-search approach to the different variant of uninformed breadth-first and
depth-first approaches reported in [19]. We observed in preliminary testing that
even the approaches with random selectivity produced the same results in inde-
pendent runs with negligible deviations (±1 covered axiom), which is why (in
addition to the computational cost) we limit our investigations to only one run
per approach.

Before our experiments, we build the guidance table for our beam search
based on re-runs of the Approaches 1–5 in [19]. This guidance table contains,
amongst others, the following interesting information. This step is mandatory,
as otherwise our approach default to a simple breadth-first search.

First, let us look at individual axioms. In Fig. 1, we show for all covered
axioms the number of times that they have been successfully and unsuccessfully
replaced. The use of this data is not straight-forward, since there is no specific
pattern. For instance, one of these axioms has 188 unsuccessful replacements,
while it is successfully replaced 36 times. Such axioms have to be moved towards
the end the promising list, as they appear to be dead ends more often than not.
On the end of the spectrum, one axiom is successfully replaced 143 times, while
it is unsuccessfully replaced only three times. This makes it a good candidate
for the beam search.

Once an axiom is replaced, we can often see that it is replaced by a set of two
axioms or by even larger sets. Figure 2 shows how many different single axioms

Fig. 1. Number of successful vs. unsuccessful replacements for each single axiom, shown
as positive and negative values. The axioms (along the x-axis) are sorted in a decreasing
order according to the number of successful replacements.
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Fig. 2. Replacement set’s sizes and number of replacements for single axioms Beam-
SearchFastMinSet

are replaced by a set of axioms. For example, 446 pairs of axioms successfully
replace a single axiom, and there is one case where one axiom is replaced by an
enormous set of 63 axioms. In the future, we can study such cases in order to
identify equivalent sets of axioms. Moreover, they can help us to improve the
framework by restricting the number of times that we replace that one axiom in
the future, since it may increase the execution time for the proof procedure.

5.2 Code Coverage Results

Achieving high code coverage in software testing is of great importance to
judge the test suite. Nevertheless, in verifying deductive verification systems,
our results show axiomatization coverage is essential. This is because although
in 295 test cases the lines of code (LOC) coverage is more than 34 %, the axiom-
atization coverage is less than 10 %; moreover, 41 test cases have less than 1 %
of axiom coverage. Table 2 shows a summary of the coverage details for the test
cases.

As can be seen, the average LOC coverage is 37 %, in contrast, it is only
4.43 % for the axiomatization coverage. Most of test cases exercised nearly the
same proportion of the code as the standard deviation for LOC is 2.5 %. On the
other hand, there are fluctuations in the amount of covered axioms by the test
suite. This is due to the logical properties within each test case.

In addition, some test cases managed to exercise 89 % and 44 % of the class
and LOC coverage respectively, which is the maximum LOC coverage; nonethe-
less, they could not cover even 17 % of the axioms individually. In short, there
is no clear correlation between the exercised code and the used axioms.

The overall axiomatization coverage—as it is expected—is low with only
45 %. Additionally, the LOC coverage is only 51 %, which is significantly less
than the 85 % recommended by the software testing (see e.g. [20]). Though the
class coverage reached 90 %, after we analyzed the EMMA outputs, we find that
many classes are only partially covered. This includes classes that appear to be
crucial for the proof procedure: the LOC coverage there ranges from 62 % down
to even 0 % (see Table 3 for some examples).
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Table 2. Code Coverage vs. Axiomatization Coverage (excerpt). Sorted by axiom
percentage in descending fashion.

Test Cases Code Coverage Axiomatization Coverage

Class Line Number Axiom

Coverage Coverage of Axioms Percent

standard key-java dl-arrayUpdateSimp 87% 35% 3 0.20%

.... 182 test cases ....

heap-SmansEtAl-Iterator list 83% 40% 62 4.08%

... 134 test cases ....

heap-list-ArrayList concatenate 85% 44% 255 16.78%

min/max 81%/89% 34%/44% 3/255 0.2%/17%

meanstandard deviation 85%1.9% 37%2.5% 6752 4.43%3.4%

union 90% 51% 691 45%

Table 3. Some classes within KeY tool.

Class Method Coverage Line Coverage

Taclet 66 % 62 %

TacletBuilder 61 % 47 %

Proof 54 % 50 %

CompoundProof 0 % 0 %

5.3 Axiomatization Coverage Results

The coverage statistics of the different approaches are listed in Table 4. The
number 611 represents the result of the naive approach, where the full set of
1520 axioms is used and no alternatives are sought. This is our base value.

We start with some general observations. First, each of the individual
approaches improves the total coverage over the first minimal sets by about
12–15 % each. The highest individual improvements are made by our Beam-
SearchFastMinSet.

When considering all approaches together, then the initial coverage of about
611 axioms increases to a total of 755 axioms through the use of whitelists.
This means that all approaches together improve the achievable coverage
autonomously by about 24 %, and that is without requiring a verification engi-
neer to write a single new test case.

It is an interesting coincidence that our BeamSearchFastMinSet achieves a
total coverage of 722 axioms, which is identical to the coverage achieved by
Approaches 1–5 together. As we can see via the 755 axioms that are covered
by the union of all seven approaches, our beam search does not only cover most
of what Approaches 1–5 do, but it also covers additional 33 axioms. It appears
that the combination of guidance table and the fast reduction (when available)
allows it to search more effectively than the previous approaches.



An Improved Beam-Search for the Test Case Generation 89

Table 4. Coverage statistics. The first minimal sets refer to those found first by the
approaches, which initially use all 1520 axioms. The results for Approaches 1–5 are
based on reruns from [5].
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. . . the first minimal sets
611 611 610 613 609 615 611 612 638

(40%) (40%) (40%) (40%) (40%) (40%) (40%) (40%) (42%)

. . . all minimal sets
701 699 688 687 684 722 692 722 755

(46%) (46%) (45%) (45%) (45%) (48%) (46%) (48%) (50%)

Table 5. Successful vs. unsuccessful replacements: unique single axioms.

Successfully Unsuccessfully Total Successfully

replaced replaced replaced

single axioms single axioms axioms

Depth-First search 29 230 259 11 %

Random Depth-First search 26 235 261 10 %

Greedy 21 218 239 9 %

Breadth-First search 181 259 440 41 %

Random Breadth-First search 193 267 460 42 %

BeamSearch 211 97 308 69 %

BeamSearchFastMinSet 231 90 321 72 %

Table 6. Analysis: equivalent sets found by each approach.

Equivalent sets Total % of equivalent sets

Depth-First search 7,544 132,735 6%

Random Depth-First search 3,880 40,446 10%

Greedy 2,458 80,886 3%

Breadth-First search 9,037 26,733 34%

Random Breadth-First search 10,784 28,842 37%

BeamSearch 33,178 75,180 44%

BeamSearchFastMinSet 54,821 258,319 21%
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Let us now investigate the differences between the approaches. First, by using
our GT tool, we obtain the number of times that a single axiom is successfully
replaced. The results are shown in Table 5, and they clearly show the structural
differences between the approaches. For example, the depth-first Approaches
1–3 have the smallest number of replacements of single axioms, which is expected
given their nature: they will explore shorter and shorter white lists first. The
breadth-first Approaches 4/5 on the other hand achieve significantly higher
single replacements, since they explore the replacement of single axioms first.
Our beam search achieves the highest number of replacements here, since it
prefers the replacements of single axioms, and it also considers single axioms
when it comes across new ones in the search. This has the big advantage for the
use of the guidance table that shorter keys are more likely to be existent, and
therefore of help. We will see this in the following.

Next, we obtain the number of equivalent sets found by each approach.
Table 6 presents the total attempts, as well as the amount of equivalent sets
and their percentages. As we can see, the success rate is in favor of Beam-
Search with 44 %. On the other hand, among all BeamSearchFastMinSet is
the fourth with 21 %, it comes after the Random Breadth-First search
and Breadth-First search with 37 % and 34 %, respectively. This is because
BeamSearchFastMinSet eliminates the reduction time for finding the minimal
sets M , which in turn enables it to spend more time exploring the search space.
In addition, it is worth mentioning that the numbers of the total attempts rep-
resent the sizes of each approach’s generated guidance table, which shows that
a large amount of information for the beam search is extracted.

In contrast to this, the number of equivalent sets for BeamSearchFastMinSet

is the largest amongst the algorithms. Moreover, there is a significant difference
between our beam search approaches and the breadth-first approaches Random
Breadth-First search and Breadth-First search, that achieve the fourth
and fifth highest number of equivalent sets. In total, all 74,219 unique test cases
created by all approaches are stored and are ready to be used for regression
testing, currently achieving a coverage that is 24 % higher than that achieved by
the 319 original test cases.

Summarizing the results of this section, we make the following conclusions:

1. Through the use of the guidance table, BeamSearchFastMinSet and Beam-
Search search more efficiently. This also allows us to identify more logical
relationships among the axioms to improve our framework for future runs.

2. Moreover, our results clearly show that even though BeamSearchFastMinSet

is using heuristic information and it has the ability to decrease the reduc-
tion time, the problem of finding potential candidates within such a difficult
search space makes it increasingly hard to cover further axioms. Therefore we
conjecture that we are getting increasingly close to the local optimum that
we can achieve with our current approach.
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6 Conclusions and Future Work

In this article, we present a beam search approach for increasing the axiomati-
zation coverage in deductive verification systems, where a set of axioms—logical
rules that capture the semantics of a programming language—is used to find a
proof that a program satisfies its formal specifications. Our approach automati-
cally creates test cases by preventing the verification tool from using previously
covered axiom. Therefore, the system tries to find alternative axioms to prove
the program. A test case consists of the verifiable program, its requirements, and
the allowed set of axioms.

Our heuristic approach involves a learning process where the beam search
method uses a guidance table that contains special historical data from previous
runs. As a result, It explores the search space more effectively than previous
approaches that use uninformed breadth-first and depth-first variants. Whilst
successful in increasing the coverage of our tested verification system, these unin-
formed techniques often generated infeasible solutions during their search, and
they are not much directed towards an actual increase of the coverage.

The experiments reveal several interesting insights. First, our approach
achieves a coverage comparable to that of the union of five previous approaches,
when given the same computation budget. Furthermore, the overall coverage
has been improved over the starting point by 24 %. Second, the high number of
unsuccessful replacement attempts by our fast approach strongly indicates that
we are getting increasingly close to the local optimum of “maximum coverage”
that we can reach with our test case reuse. Finally, we found there is no corre-
lation between code and axiomatization coverage and therefore it is essential to
focus on maximizing the axiom coverage to uncover hidden defects.

We will continue our research in the following areas:

1. We plan to investigate the reasons why some axioms are not covered, amongst
others, using the help of developers of the verification systems. We will sys-
tematically write specific test cases aimed to increase the axiomatization cov-
erage for specific axioms.

2. Once we will have reached a satisfactory axiomatization coverage, we will
need to focus on combinations of axioms. Failures in a variety of domains are
often caused by combinations of several conditions (see studies like [16]). We
plan to combine combinatorial testing with combinatorial search techniques.
Then, combinations of language features and axioms will be used to form
complex test cases. The knowledge gained from the work presented here will
help us to focus our efforts in comprehensive testing.
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