
Stealing items more efficiently with ants: a

swarm intelligence approach to the travelling

thief problem

Markus Wagner
Optimisation and Logistics, The University of Adelaide, Australia,

markus.wagner@adelaide.edu.au

Abstract. The travelling thief problem (TTP) is an academic combi-

natorial optimisation problem in which its two components, namely the

travelling salesperson problem (TSP) and the knapsack problem, interact.

The goal is to provide to a thief a tour across all given cities and a

packing plan that defines which items should be taken in which city. The

combining elements are the knapsack’s renting rate that is to be paid for

the travel time, and the thief’s slowdown with increasing knapsack use.

Previously, successful algorithms focussed almost exclusively on construct-

ing packing plans for near-optimal TSP tours. Even though additional

hill-climbers are used at times, this strong initial bias prevents them from

finding better solutions that require longer tours that can give rise to

more profitable packing plans. Our swarm intelligence approach shifts

the focus away from good TSP tours to good TTP tours. In our study

we observe that this is effective and computationally efficient, as we

outperform state-of-the-art approaches on instances with up to 250 cities

and 2000 items, sometimes by more than 10%.

Keywords: MAX-MIN Ant System, Travelling Thief Problem

1 Introduction

The travelling thief problem (TTP, [2]) is fast gaining attention for being a
challenging combinatorial optimisation problem. This NP-hard optimisation
problem combines two well-known combinatorial optimisation problems, namely
the travelling salesperson problem (TSP) and the knapsack problem. The two
components have been merged in such a way that the optimal solution for each of
them does not necessarily correspond to an optimal TTP solution. The motivation
for the TTP is to have a problem where the interactions of interdependent problem
components can be investigated systematically.

So far, constructive heuristics, simple and complex hill-climbers, and also more
sophisticated co-evolutionary approaches have been applied to the TTP. The
drawbacks of these approaches are that they either focus almost exclusively on
good TSP tours, or that they cannot navigate the search space neither effectively
nor efficiently. So far, minimally problem-specific local searches that alternate
between solving the TSP and KP components appear to perform best.

In this article, we propose the use of swarm intelligence based on ant colony
optimisation in order to solve the TTP’s tour part. The packing part is then
computed heuristically for each tour, and after each iteration the best solution is

2 Markus Wagner

improved further using additional hill-climbers. Even though the local search in
the tour generation still focusses on the TSP part, the individuals in the swarm
are assessed based on the solution’s TTP objective score. The use of swarm
intelligence allows us to explore different tours in a collaborative fashion, and we
are no longer limited by a single “current” tour. As we shall see later, this added
flexibility and shift from good TSP tours to good TTP tours is very beneficial.

We proceed as follows. Section 2 gives a brief description of the original TTP
formulation and discusses related work. In Section 3, we describe our approach
for stealing items more efficiently with the help of swarm intelligence. We present
and discuss the results of our experimental study in Section 4, before we conclude
with remarks on possible future research directions.

2 Traveling Thief Problem

2.1 Problem Description

We use the definition of the TTP by Polyakovskiy et al. [11]. Given is a set
of cities N = {1, . . . , n} and a set of items M = {1, . . . ,m} distributed among
the cities. For any pair of cities i, j ∈ N , we know the distance dij between
them. Every city i, except the first one, contains a set of items Mi = {1, . . . ,mi},
M = ∪

i∈N
Mi. Each item k positioned in the city i is characterised by its profit

pik and weight wik, thus the item Iik ∼ (pik, wik). The thief must visit all cities
exactly once starting from the first city and returning back to it in the end. Any
item may be selected in any city as long as the total weight of collected items
does not exceed the specified capacity W . A renting rate R is to be paid per each
time unit taken to complete the tour. υmax and υmin denote the maximal and
minimum speeds that the thief can move. The goal is to find a tour, along with
a packing plan, that results in the maximal profit.

The objective function uses a binary variable yik ∈ {0, 1} that is equal to
one when the item k is selected in the city i, and zero otherwise. Also, let Wi

denote the total weight of collected items when the thief leaves the city i. Then,
the objective function for a tour Π = (x1, . . . , xn), xi ∈ N and a packing plan
P = (y21, . . . , ynmi

) has the following form:

Z(Π,P) =
n∑
i=1

mi∑
k=1

pikyik −R

(
dxnx1

υmax − νWxn

+
n−1∑
i=1

dxixi+1

υmax − νWxi

)

where ν = υmax−υmin

W is a constant value defined by input parameters. The
minuend is the sum of all packed items’ profits and the subtrahend is the amount
that the thief pays for the knapsack’s rent equal to the total traveling time along
Π multiplied by R.

2.2 Current State-of-the-Art

Polyakovskiy et al. [11] proposed the first set of heuristics for solving the TTP.
Their approach was to solve the problem using two steps. The first step involved

Stealing items more efficiently with ants 3

generating a good TSP tour by using the classical Chained Lin-Kernighan
heuristic [1]. The second step involved keeping the tour fixed and applying a
packing heuristic for improving the solution.

Bonyadi et al. [3] and Mei et al. [7] investigated experimentally and theoret-
ically the interdependency between the TSP and knapsack components of the
TTP. They proposed heuristic approaches including coevolutionary ones and a
memetic algorithm. The latter called MATLS considered the interdependencies
in more depth and outperformed cooperative coevolution.

Faulkner et al. [6] investigated multiple operators and did a comprehensive
comparison with existing approaches. They proposed a number of operators,
such as Bitflip and PackIterative, for optimising the packing plan given a
particular tour. They also proposed Insertion for iteratively optimising the tour
given a particular packing. They combined these operators in a number of simple
and complex heuristics that outperformed existing approaches.

Recently, a relaxed version of the TTP was presented by Chand and Wagner
[4] as reaction to the criticism that the TTP is not realistic. In the new version
of the problem multiple thieves are allowed to travel across different cities (not
necessarily across all) with the aim of maximising the group’s collective profit.

Note that even when the tour is kept fixed, packing is NP-hard [10].

3 Using ants to steal items

While swarm intelligence does not easily offer provable performance guarantees,
it does give us a means of working on the tour part of the TTP, on top of which
we can run other heuristics. Effectively, our approach is a bi-level one, where the
ants are assessed based on the TTP solution for which they created the tour.

The packing heuristic of our choice is the fast and effective PackIterative [6].
It considers the items’ profits and weight, and also their distances to the final
city based on the provided tour. Its characteristic feature is that it performs a
binary search on an internal parameter in order to fine-tune the packing.

Our implementation is built upon Adrian Wilke’s ACOTSPjava 1.0.1,1 which
is based on Thomas Stützle’s ACOTSP 1.0.3. The overall logic of the used swarm
intelligence package remains unchanged, and our modifications are minimal.

In Algorithm 1 we show the simplified overview of our swarm intelligence
approach. The TTP-specific injections are mainly in two places:

1. Whenever a tour is generated, a packing plan for it is generated using
PackIterative. The tour’s objective score, which is normally the total
distance travelled, is replaced by the TTP solution’s objective score.

2. At the end of each iteration, we run hill-climbers on the best solutions in
order to achieve further improvements. We call this “boosting”.

Note that we make a rather strong assumption in the first injection: as the ants’
tours are assessed using PackIterative, we assume that the packing heuristic is
optimal. While this is not the case, we have observed in [6] that PackIterative

1 ACOTSPjava: http://adibaba.github.io/ACOTSPJava/, last accessed 28 Feb 2016.

http://adibaba.github.io/ACOTSPJava/

4 Markus Wagner

Algorithm 1 ACOTSP for the Travelling Thief Problem (injections in italics)
1: while (termination condition not met)

2: Construct tours using ants.

3: Construct for each tour a packing plan using PackIterative, resulting in a

TTP objective score. If the tour has been assessed before, we skip the packing

step and retrieve the score from a cache.

4: Perform local search on tours (if activated).

5: Update ACO statistics.

6: Boost solutions using (1+1)-EA, Insertion, Bitflip (if activated).

7: Pheromone trail update.

quickly produces very good approximations of the optimal packing across a wide
range of instances.

Lastly, note that we improve the runtime of the first modification by caching
and retrieving <tour,objective score> tuples, as PackIterative is deterministic.
Also, we rotate the tours before running the packing heuristic, so that they always
start and end in the first city.

4 Experimental Study

4.1 Experimental Setup

For our investigations, we use the set of TTP instances defined by Polyakovskiy
et al. [11].2 In these instances, the two components of the problem have been
balanced in such a way that the near-optimal solution of one sub-problem does
not dominate over the optimal solution of another sub-problem.

The characteristics of the original 9,720 instances vary widely. For our
experiments, we use 108 instances with the following characteristics:

– nine different numbers of cities (spread out roughly logarithmically): 51, 76,
100, 159, 225, 280, 574, 724, 1000;

– two different numbers of items per city: 3, and 10;
– all three different types of knapsacks: uncorrelated, uncorrelated with similar

weights, bounded strongly correlated;
– two different sizes of knapsacks (capacities): 3 and 7 times the size of the

smallest knapsack.

We run all algorithms for a maximum of 10 minutes per instance. Due to their
randomised nature, we perform 30 independent repetitions of the algorithms
on each instance. All computations are performed on machines with Intel Xeon
E5430 CPUs (2.66GHz) and Java 1.8. Note that our code and results are available
online: http://cs.adelaide.edu.au/~optlog/research/ttp.php.

We assess the quality of the algorithms using the following approach. For
each instance, we consider the best solution found to be a lower bound on the
achievable objective value. Then, we take the average of the 30 results produced
2 As available at http://cs.adelaide.edu.au/~optlog/research/ttp.php

http://cs.adelaide.edu.au/~optlog/research/ttp.php
http://cs.adelaide.edu.au/~optlog/research/ttp.php

Stealing items more efficiently with ants 5

by an algorithm and then compute the ratio between that average and the best
objective value found, which gives us the approximation ratio. This ratio allows
us to compare the performances across the chosen set of instances, since the
objective values vary across several orders of magnitude.

4.2 MMAS configurations

The ACOTSPjava package allows us to set a large number of different parameters.
One of them is the choice of the actual ant colony optimisation approach. To
prevent pheromones from dropping to arbitrarily small values, we use the MAX-
MIN ant system by Stützle and Hoos [12], which restricts all pheromones to a
bounded interval. The MMAS parameters that we employ are the default ones
in ACOTSPjava: ρ = 0.5, α = 1, β = 2, ants=25, max_tours=100, tries=1,
elitist_ants=100, ras_ranks=6.

In preliminary experiments, we noticed that the use of TSP-specific local
search (see line 4 of Algorithm 1) was crucial for achieving good TSP tours,
which is a commonly made observation (see for example [5, 12]). In our study,
we employ the following two variants of local search: ls3 runs 3-opt on a tour
generated by ants, and ls4 randomly picks for each tour either 2-opt, 2-h-opt, or
3-opt. With the latter, we allow for slightly more varied exploitations of tours.

For the boosting that we perform, we use the operators described in [6].
If boosting is performed, then we first run (1+1)-EA on the packing plan for
10,000 iterations as a hill-climber. Then we perform one pass of Insertion,
which means that for each city we attempt once to relocate it to each position
in the travel sequence. Lastly, we perform one pass of Bitflip, where for each
item we check once whether changing its packing status increases the objective
score. The overall computational complexity of this boosting is quadratic in the
number of cities and linear in the number of item.

In summary, we investigate the following four MMAS configurations, depend-
ing on the chosen local search and depending on whether or not boosting is
activated: MMASls3, MMASls3boost, MMASls4, MMASls4boost.

In our opinion, our MMAS approaches are natural successors of the approaches
S5 and C3–C6 from [6]. S5 resamples new routes independently, whereas our
approach resamples new routes based on the previous ones. With boosting
activated, our MMAS approaches are somewhat similar to the heuristics C3–C6,
which employ hill-climbers on top of single tours as well. In contrast to C3–C6,
our algorithms search with distributions of tours. With this change in focus we
expect performance gains, as longer tours are investigated systematically.

4.3 Comparison with state-of-the-art

We compare our MMAS-based approaches with recent ones from the literature.
In particular, these are S1/S5 and C3/C4/C5/C6 [6] and MATLS [8].

In Figure 1 we show a summary of the over 1100 average approximation ratios
as trend lines. We can make the following observations.

6 Markus Wagner
MMASls4boost

||
||

MMASls3
||
||

MMASls3
||

MMASls4boost

MMASls3boost

MMASls4

C6,MMASls3

C5

MATLS
C3

S1
C4

S5
MMASls4boost

||
||

Fig. 1. Summary of results shown as trend lines. The curves are polynomials of degree

six. Similar approaches are coloured identically to allow us to focus on the different types

of the approaches: S1/S5 are solid black lines, C3–C6 are green short dashes, MATLS

is a red solid line, and the MMAS-approaches are blue long dashes. Our MMAS-based

approaches are the best performing ones for TTP instances with up to 250 cities and

2000 items, on which previously MATLS and C3–C6 performed best.

1. The baseline approach S1, where PackIterative is run only once on top of
a single ChainedLinKernighan tour, is clearly outperformed by all others.

2. Our MMAS-approaches (blue) are the best performing ones for TTP instances
with up to 250 cities and 2000 items. Previously, the more holistic approach
MATLS (red) performed best one these.

3. Our boosting of solutions and also the variation in the TSP local search prove
helpful for instances with up to 200–250 cities and 800 items. For larger
instances, MMASls3 is the best performing swarm intelligence approach.

4. For instances with 250–500 cities, the complex approaches C3–C6 with their
local search routines achieve the top ranks. On even larger instances, the
simple resampling heuristic S5 (black) dominates, as already observed in [6].

Let us briefly look into the impact that the MMAS search has on the tours of
the final solutions. In Table 1 we show details of different best solutions found.
While most solutions might look quite similar at first glance, they differ in some
fundamental aspects, of which we highlight a few in the following.

For the first instance, which is one of the smallest investigated ones, our
MMASls4 was the best performing approach on average, and it also found the
best solution. For both S1 and C6, their best solution is >10% worse. The reason
appears to be their strong focus on the use of the Chained Lin-Kernighan heuristic,
which results in a shorter tour. Even the local search routines in C6 are not
sufficient to escape the local optima. In contrast to this, our MMAS-approaches
successfully explore parts of the search space with longer tours.

For the second instance, which is one of the largest investigated ones, the
best solutions by S1, S5, and C6 are again the ones with the shortest travelled

Stealing items more efficiently with ants 7

a
p
p
ro
a
ch

u
se
d
k
n
a
p
sa
ck

ca
p
a
ci
ty

u
n
u
se
d
k
n
a
p
sa
ck

ca
p
a
ci
ty

to
ta
l
p
ro
fi
t

o
f
it
em

s

tr
a
v
el

d
is
ta
n
ce

tr
a
v
el

ti
m
e

o
b
je
ct
iv
e

sc
o
re

a
v
er
a
g
e

a
p
p
ro
x
.

ra
ti
o

eil51_n150_uncorr_07

MMASls4 36538 11671 53368 467.00 652.11 11763 0.997

S1/C6 34622 13587 52145 459.00 659.35 10079 0.856/0.857

dsj1000_n2997_uncorr-similar-weights_03

MMASls4 758385 62635 590594 19286106 27205708 46480 0.832

MMASls3boost 774523 46497 595519 19290271 26699765 61524 0.871

S1 758408 62612 584276 18705228 26709155 50093 0.622

S5 758364 62656 590515 18750512 26599551 58524 0.931

C6 761602 59418 587164 18750975 26376923 59626 0.876

Table 1. For two instances, we show details of the best solutions (in terms of “objective

score”) found by different approaches for two instances. For example, MMASls3boost

found an outstanding solution for the second instance, however, it is outperformed on

average by S5 (0.871 vs 0.931). The shaded cells highlight the best objective scores and

best average approximation ratios.

distances. S1’s best solution actually has the shortest tour, but the resulting
objective score is the second-worst. S1’s resampling variant S5 investigates many
tours, which can be longer and which can offer different ways of constructing the
packing plans. MMASls4 now performs poorly as it lacks hillclimbers to optimise
the packing plans. MMASls3boost performs significantly better on average, and
even found an oustanding solution once. Interestingly, this solution has the longest
travel distance and the highest knapsack use among all five shown solutions.

In summary, we can see that exploring longer tours can be very beneficial, if
done efficiently. This is exactly what we expect to see in the TTP, as it is the
combination of the travelling salesperson problems and the knapsack problem.

5 Concluding remarks

While our MMAS approach is most definitely not “one approach to rule them
all”, it outperforms existing approaches on instances with up to 250 cities and
2000 items, sometimes by over 10%. It achieves this because it focusses less than
existing approaches on good TSP tours, but more on good TTP tours.

We investigated the boosting of solutions in the form of TTP-specific local
search. This was effective in general, however, it is too time-consuming on larger
instances and thus detrimental to the performance, as it reduces the number
of tours the algorithms can consider given the fixed time budget. This brings
us back to the general problem. Currently, the TTP’s search space seems to
be incredibly hard to navigate. We understand that it can be tempting for
researchers to focus on large instances using construction heuristics and hill-
climbers. However, we suggest to focus on small instances instead, because large
performance gains are still possible there as our investigations show. By creating
good approximation algorithms that are effective in considering the interaction of

8 Markus Wagner

the problem components, but that are not necessarily computationally efficient,
we should be able to gain additional insights into the actual interaction.

In the future, maybe instance analysis where the influence of the different
components is varied may help to understand how the interactions influence
algorithm performance. A first step towards this has recently been taken by
Nallaperuma et al. [9], who systematically analysed the difficulty of TSP instances
for MMAS with different parameter settings.

It is interesting to note that no parameter tuning on the MMAS side of our
approaches has been performed. We have made all code and all results publicly
available: http://cs.adelaide.edu.au/~optlog/research/ttp.php. On this project
website, we also have an extended version of this article with additional insights.

Bibliography

[1] D. Applegate, W. J. Cook, and A. Rohe. Chained Lin-Kernighan for large
traveling salesman problems. Journal on Computing, 15(1):82–92, 2003.

[2] M. R. Bonyadi, Z. Michalewicz, and L. Barone. The travelling thief problem:
The first step in the transition from theoretical problems to realistic problems.
In Congress on Evolutionary Computation, pages 1037–1044. IEEE, 2013.

[3] M. R. Bonyadi, Z. Michalewicz, M. R. Przybylek, and A. Wierzbicki. Socially
inspired algorithms for the TTP. In Genetic and Evolutionary Computation

Conference, pages 421–428. ACM, 2014.
[4] S. Chand and M. Wagner. Fast heuristics for the multiple traveling thieves

problem. In Genetic and Evolutionary Computation Conference. ACM, 2016.
Accepted for publication.

[5] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, 2004.
[6] H. Faulkner, S. Polyakovskiy, T. Schultz, and M. Wagner. Approximate

approaches to the traveling thief problem. In Genetic and Evolutionary

Computation Conference, pages 385–392. ACM, 2015.
[7] Y. Mei, X. Li, and X. Yao. On investigation of interdependence between

sub-problems of the TTP. Soft Computing, 20(1):157–172, 2014.
[8] Y. Mei, X. Li, and X. Yao. Improving efficiency of heuristics for the large

scale traveling thief problem. In Simulated Evolution and Learning, volume
8886 of LNCS, pages 631–643. Springer, 2014.

[9] S. Nallaperuma, M. Wagner, and F. Neumann. Analyzing the effects of
instance features and algorithm parameters for max min ant system and the
traveling salesperson problem. Frontiers in Robotics and AI, 2(18), 2015.

[10] S. Polyakovskiy and F. Neumann. Packing while traveling: Mixed integer
programming for a class of nonlinear knapsack problems. In Integration of

AI and OR Techniques in Constraint Programming, volume 9075 of LNCS,
pages 330–344. Springer, 2015.

[11] S. Polyakovskiy, M. R. Bonyadi, M. Wagner, Z. Michalewicz, and F. Neumann.
A comprehensive benchmark set and heuristics for the traveling thief problem.
In Genetic and Evolutionary Computation Conf., pages 477–484. ACM, 2014.

[12] T. Stützle and H. H. Hoos. MAX-MIN ant system. Journal of Future

Generation Computer Systems, 16:889–914, 2000.

http://cs.adelaide.edu.au/~optlog/research/ttp.php

