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Abstract

Multi-objective optimization problems having more than three objectives are

referred to as many-objective optimization problems. Many-objective optimiza-

tion brings with it a number of challenges that must be addressed, which high-

lights the need for new and better algorithms that can efficiently handle the

growing number of objectives. This article reviews the different challenges as-

sociated with many-objective optimization and the work that has been done in

the recent-past to alleviate these difficulties. It also highlights how the existing

methods and body of knowledge have been used to address the different real

world many-objective problems. Finally, it brings focus to some future research

opportunities that exist with many-objective optimization.

We report in this article what is commonly used, be it algorithms or test

problems, so that the reader knows what are the benchmarks and also what other

options are available. We deem this to be especially useful for new researchers

and for researchers from other fields who wish to do some work in the area of

many-objective optimization.
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Test Problems, Real World Applications, Theory, Progress, Challenges

1. Introduction

Multi-objective optimization refers to the simultaneous optimization of mul-

tiple conflicting objectives. It gives rise to a set of optimal solutions (known as
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the Pareto-optimal solutions), instead of a single optimal solution [18]. None of

the optimal solutions can claim to be better than any other with respect to all

objective functions.

Surveys have highlighted this to be one of the fastest growing fields of re-

search and application among all computational intelligence topics [12]. It is also

a field of research that attracts interest from people of different backgrounds in-

cluding mathematicians, computer scientists, economists and engineers [12].

Evolutionary multi-objective optimization (EMO) methods have shown to be

highly successful in finding well-converged and well-diversified non-dominated

solutions for optimization problems with two and three objectives[15]. Some of

these successful methodologies include Strength Pareto Evolutionary Algorithm

(SPEA) [87], SPEA2 [88], Non-dominated Sorting Genetic Algorithm (NSGA)

[71], NSGA-II [18] and Pareto Archived Evolution Strategy (PAES) [43].

While all these methodologies have shown good success, it is important to

consider that many real world problems have more than three objectives. Scal-

ability tests for these methodologies highlight a number of problems relating

to convergence, diversity and computation time [42]. As a result, it is impor-

tant to come up with new methodologies or to improve existing ones to be able

to deal with a higher number of objectives. Multi-objective problems having

more than three objectives are referred to as many-objective optimization prob-

lems [65, 63]. Many-objective optimization gives rise to a new set of challenges

that must be addressed. It also opens doors for new research opportunities

which can allow us to solve more complex real world problems.

While many-objective optimization is a fairly new area of research, it is im-

portant to take note that some work on this had already begun in the early

1990s. One of the earliest algorithms which has been applied to many-objective

problems is MOGA [26]. MOGA was tested on the four objective Pegasus gas

turbine engine optimization problem [26]. Since then a number of researchers

have attempted to solve different real world and simulated many-objective op-

timization problems. Majority of the work in this area has taken place within

the last decade.
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This short and compact review represents an update over existing surveys

on this topic, such as the ones done by Wagner et al. [77] (2007, 22 references

in total), Ishibuchi et al. [38] (2008, 55 references in total) and the recent one

by von Luecken et al. [75] (2014, 112 references in total). We extend those by

putting over 60 new articles into the context of many-objective optimization.

We highlight some of the current challenges and bring focus to the work that

has been done to address these difficulties. We also identify a combination of old

and recently developed methods which have shown success with many-objective

optimization. There also exists quite a bit of literature on application research.

We highlight some of the recent application research done in this area. We

conclude by bringing focus to some of the future research opportunities that

exist with many-objective optimization.

2. Definitions & Basic Principles

Without loss of generality, a simple multi-objective problem1 can be formu-

lated as:

min F (x) = (f1(x), f2(x), ...fm(x))T

x ∈ X ⊂ Rn (1)

where x = (x1, ..., xn) is a vector of n decision variables and X is an n-

dimensional decision space. m is the number of objectives to be optimized.

When m ≥ 4, the problem becomes a many-objective problem.

In the context of multi-objective optimization, the optimal solutions are also

referred to as non-dominated solutions. In a minimization problem, a solution

x is considered non-dominated in comparison to another solution x* when no

objective value of x* is less than x and at least one objective value of x* is

greater than x [71].

1As above-mentioned, many-objective problems are multi-objective ones with more than

three objectives. Thus, the definitions here hold for many-objective problems as well.
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Convergence and diversity are the main goals of any multi-objective opti-

mization algorithm. Convergence refers to finding a set of solutions that lie

on or close to the true Pareto-optimal front [12]. Diversity refers to finding a

set of solutions which are diverse enough to represent the entire range of the

Pareto-optimal front [12].

To measure the performance of EMO algorithms, a number of quality indi-

cators have been proposed over the years. Some of the most widely used quality

indicators are the inverted generational distance (IGD), hypervolume and the

R2 indicator. IGD measures the average distance for all members in the true

Pareto-optimal set to their nearest solutions in the obtained solution set (oppo-

site of generational distance (GD)) [67]. The hypervolume of a set of solutions

measures the size of the portion of objective space that is dominated by those

solutions collectively [82]. The IGD and the hypervolume can be used to mea-

sure both the spread of the solutions and convergence to the Pareto-front. The

family of R-indicators (R1, R2, R3) can be used to assess and compare Pareto

set approximations on the basis of a set of utility functions [89]. In particular

the R2-indicator [10] was explored recently because it is weakly monotonic and

computationally efficient [22, 11].

A list of other quality indicators are given in Table 1.2

3. Challenges

3.1. Non-dominated Population

Most of the EMO algorithms use the concept of Pareto Dominance in order

to compare and identify the best solutions [28]. An increase in the number of

objectives causes a large portion of a randomly generated population to become

non-dominated [28]. Having a population which is largely composed of non-

dominated solutions does not give room for creating new solutions in every

generation [15, 38]. This slows down the overall search process.

2This is a summary and extension of Table 1 from [49].
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Table 1: Quality indicators for multi-objective optimization.

Quality Indicator Measures [49]

Hypervolume [82] Convergence, Spread & Uniformity

IGD [67], IGDp [69] Convergence, Spread & Uniformity

Hyperarea Ratio[74] Convergence, Spread & Uniformity

Averaged Hausdorff Distance [69] Convergence, Spread & Uniformity

G-Metric [50] Convergence, Spread & Uniformity

Diversity Comparison Indicator (DCI) [49] Spread & Uniformity

Diversity Measure [16] Spread & Uniformity

R2 indicator [10] Spread & Uniformity

Sigma Diversity Metric [56] Spread & Uniformity

GD [67], GDp [69] Convergence

Convergence Measure [47] Convergence

Error Ratio [74] Convergence
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Some research has been done on tackling this problem and finding alter-

natives to the Pareto dominance approach. Sato et al. [68] proposed a novel

multi-objective evolutionary algorithm that uses Pareto partial dominance. It

calculates dominance between solutions using a subset of the objectives which

are switched after a fixed number of generations. Their approach was able to

give better convergence in comparison to conventional NSGA-II for the many-

objective 0/1 knapsack problem. Aguirre and Tanaka [2] proposed a method

to search on many-objective problems by partitioning the objective space into

sub-spaces and performing one generation of the evolutionary search in each

sub-space. Their method showed good performance on the MNK Landscapes

with 4 to 10 objectives.

The ε-domination principle [46, 15] which is used for approximating the

Pareto-front can also be used to address the problem of a large non-dominated

set [32]. The use of this principle will make all points within an ε-distance

from a set of Pareto-optimal points ε-dominated. This process will allow for

the generation of a finite number of Pareto-optimal points as the target [15].

It will also allow for a more diverse set of solutions. Algorithms based on the

ε-domination principle include the ε-MOEA [20], ε-NSGA-II [45], Borg-MOEA

[33] and AGE-II [76]. Other domination principles such as fuzzy-dominance [79]

can also be used to overcome this problem.

A related problem with high-dimensional Pareto fronts is that larger pop-

ulations are needed to adequately represent those. Intuitively, it might make

sense to increase the population size exponentially with the number of objec-

tives, however, this is not always necessary. For example, Papadimitriou and

Yannakakis [61] and Erlebach et al. [24] have shown that under certain assump-

tions there is always an approximate Pareto set whose size is just polynomial in

the length of the encoded input. This can be achieved by placing a hyper-grid

in the objective space using the coordinates 1, (1 + ε), (1 + ε)2, . . . for each ob-

jective. Since it suffices to have one representative solution in each grid cell and

to have only non-dominated cells occupied, it can be seen that for any finite ε

and any set F with bounded vectors f , i.e. 1 ≤ fi ≤ K for all i ∈ {1, . . . ,m},
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there exists a set Fε containing |Fε| ≤
(

logK
log(1+ε)

)m−1

vectors. The proof outline

is as follows. First, the objective space is divided into
(

logK
log(1+ε)

)m
boxes, and

from each box at most one point can be in the approximation at the same time.

Second, there are
(

logK
log(1+ε)

)m−1

equivalence classes of boxes where (without

loss of generality) in each class the boxes have the same coordinates in all but

one dimension. In each class logK
log(1+ε) different boxes constitute a chain of domi-

nating boxes. Hence, only one point from each of these classes can be a member

of the approximation at the same time. For detailed proof and for more details

on this regarding evolutionary multi-objective and many-objective optimization,

we refer the interested reader to the article by Laumanns et al. [46].

Another solution would be to focus on finding a partial front corresponding to

the preference information given by users [12]. This would also save unnecessary

computation time which is spent on finding solutions that are not of interest

to the user. A range of different modifications to existing algorithms have been

proposed in the past to incorporate user preference. The techniques range from

reference points (e.g., [21, 55]) to weights in the objective space (e.g., [59, 27]).

3.2. Computational Efficiency

Another major problem is that many-objective optimization algorithms tend

to be computationally expensive. Some performance matrices such as the hy-

pervolume require exponentially more computation power when the number of

objectives increase, since high-dimensional points are being compared against

one another [15]. To improve on this, faster, accurate and also approximate

algorithms for the computation of the hypervolume have been suggested over

the years [5, 82, 7].

Diversity measures such as the crowding distance also become computation-

ally expensive when identifying neighbors in a high-dimensional space [15]. To

address this, Deb and Jain [15] suggested the use of a reference point based

approach in which points corresponding to a set of well-spread reference points

can be emphasized to find a set of widely distributed Pareto-optimal points.

This approach can also alleviate the problem of a large non-dominated set. The
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ε-domination principle can also be used here to achieve a set of well spread solu-

tions since its computational complexity increases only linearly with the number

of dimensions.

3.3. Recombination

Recombination operators play an important part in EMO. Problems arise

when only a handful of solutions are to be found in a large dimensional space

as the solutions are more likely to be widely distant from each other [15], if the

EMO algorithm focuses on extreme points. Special recombination operators

may be necessary for handling this problem. To alleviate this problem, Deb and

Jain [15] suggested the use of a special recombination scheme in which near-

parent solutions are emphasized. An example of this is the simulated binary

crossover (SBX) [13] with a large distribution index. Careful consideration must

be put into the selection of the operator and the participating parents.

3.4. Visualization

Visualization is an important part of optimization and decision making.

As the number of objectives increase beyond three it becomes difficult for re-

searchers to be able to visualize the objective space. One possible way around

this would be to visually alternate between the given objectives. For example, a

user can start off by choosing a set of three objectives and view the distribution

using a three-dimensional graph. The user can then switch between objectives

and view the different trade-offs while giving emphasis to three objectives at

one time. This will also be an effective approach in preventing the user from

getting overwhelmed with the large number of objectives. Objective reduction

methods [17] can also be helpful.

In terms of actual graphing methods, the parallel coordinates plot [37] has

proven to be a popular choice in many-objective problem solving research [25].

The parallel coordinates plot is a two-dimensional plot with the x-axis rep-

resenting the objectives and the y-axis representing the solution values. The

geometrical features of a surface in n-dimensional space are preserved in the
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parallel coordinates system, however, this approach also has a few shortcomings

[25].

Another option is to use heatmaps [62]. In a heatmap, the columns represent

objectives and rows represent the solutions with the relative values as heat

represented by color [78]. Some researchers [78] are utilizing radial visualization

[34] which essentially displays n-dimensional data in an elliptical or circular

fashion. Sophisticated methods, such as decision maps [53] or geodesic maps

[72] can be helpful as well.

Ultimately, more effort should be put into developing better, more intuitive,

graphing and visualization tools to assist researchers and decision makers.

4. Many-Objective Optimization Methods

Different approaches have been explored for many-objective optimization.

Some have shown more success than others. Some of these methods are high-

lighted in this section. It must be noted that some of these were initially de-

signed and tested on two and three objective problems only, but over the years

they have been included in various studies for many-objective optimization as

well. As a result, we feel that it is necessary to highlight such methods as

well. It must also be noted that this list is by no means exhaustive as there are

countless methods and extensions which have been developed for many-objective

optimization.

4.1. Methods

One of the most popular algorithm in literature is the NSGA-II [18]. It is

often used as a baseline algorithm for comparison with new algorithms. The

NSGA-II is a computationally fast and elitist MOEA based on a non-dominated

sorting approach. It also uses an explicit diversity-preserving mechanism to

obtain a set of well-spread Pareto-optimal solutions. The NSGA-II was initially

tested on problems with smaller number of objectives, but over the years it has

shown to be successful in solving problems with many objectives as well.
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A number of NSGA-II improvements have been proposed over the years to

make the algorithm more efficient in handling a larger number of objectives.

ε-NSGA-II [45] combines NSGA-II with an ε-dominance archive, adaptive pop-

ulation sizing and time continuation [32]. This algorithm has also been used for

many different real world many-objective problems [44, 45].

ε-MOEA is a steady-state MOEA that exploits the benefits of an ε-dominance

archive [20, 32]. The archive contains the ε-non-dominated individuals from the

main population. The algorithm divides the objective space into a number of

hyper-boxes. Diversity is maintained within the archive by allowing only one

solution to be present in each hyperbox. The ε-dominance procedure helps in

reducing the cardinality of the Pareto-optimal region, which makes the ε-MOEA

useful for many-objective optimization.

Hadka and Reed [32, 33] proposed Borg MOEA which is an algorithm

designed for handling many-objective, multimodal problems using an auto-

adaptive multi-operator recombination operator which is able to improve search

in many different problem domains. It uses many different recombination opera-

tors such as the SBX, parent-centric crossover (PCX), simplex crossover (SPX),

polynomial mutation (PM) and many others. This allows the algorithm to

quickly adapt to the problem’s local characteristics and adjust as required.

Bringmann et al. [8] proposed an algorithm that works with a formal notion

of approximation. The proposed algorithm, called Approximation-Guided Evo-

lution (AGE), outperformed state-of-the-art approaches in terms of the desired

additive approximation and the covered hypervolume on standard benchmark

functions (with many objectives) given a fixed time budget. Despite the good

performance on problems with many objectives, AGE was not very efficient

for problems with few objectives. Another major issue with AGE was that it

stored all non-dominated points seen so far in an archive which greatly affected

its runtime.

Wagner and Neumann [76] addressed these problems by proposing a fast

approximation-guided evolutionary algorithm called AGE-II. AGE-II approxi-

mates the archive in a meticulous manner which controls its size and its influence
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on the runtime. This is achieved through the concept of ε-dominance. The al-

gorithm once again outperformed current state-of-the-art algorithms in terms

of the desired additive approximation for standard many-objective benchmark

functions with up to 20 objectives. It also performed well for problems with

fewer objectives.

HypE (Hypervolume Estimation Algorithm) [5] is a fast hypervolume indicator-

based multi-objective evolutionary algorithm that can be applied to problems

with arbitrary number of objective functions. It uses Monte Carlo simulation

to approximate the exact hypervolume values. It was tested on a range of

many-objective optimization problems and managed to give a competitive set

of results in comparison to NSGA-II [18], SPEA2 [88] and IBEA.

MOEA/D [85] is another algorithm which has shown success with many-

objective optimization. It uses a decomposition method to decompose the given

problem into a number of scalar optimization problems. These sub-problems are

then simultaneously optimized using an evolutionary algorithm. The MOEA/D

has been used for comparison in various recent studies [15, 33], making it a

benchmark algorithm for many-objective optimization.

Giagkiozis et al. [31] designed an improved decomposition method that uses

the so-called cross entropy method [66] as an estimation of distribution algo-

rithm due to its theoretical properties. The resulting optimization framework

MACE-gD was found to provide the best distributions of solutions on the Pareto

front if the geometry of the Pareto front was known a priori.

Asafuddoula et al. [3, 4] proposed a decomposition-based evolutionary al-

gorithm with adaptive epsilon comparison (DBEA-Eps). The algorithm is de-

signed using a steady state form and utilizes reference directions to guide the

search. The balance between diversity and convergence is maintained using an

adaptive epsilon comparison.

Related to these previous two decomposition-based algorithms are the the-

oretical studies by Giagkiozis and Fleming [30]. There, the authors investi-

gate whether there is an advantage of using a decomposition-based method

over Pareto-based methods. Among others, the results are that (1) Pareto-
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dominance methods and the Chebyshev scalarizing function are equivalent, and

that (2) optimal scalarizing functions can be found if the geometry of the Pareto

front is known in advance.

Deb and Jain [15] recently proposed the NSGA-III which uses a reference

point based approach for many-objective optimization. The number of ref-

erence points is similar to the population size ensuring that each population

member is associated with a reference point. This ensures diversity as the

reference points are uniformly distributed across the normalized hyper-plane.

The method, which has been developed specifically for many-objective opti-

mization, showed superior performance in comparison to methods such as the

MOEA/D [85] and NSGA-II [18]. The performance scaling to 15 objectives was

achieved mainly due to the aid in diversity preservation by supplying a set of

well-distributed reference points.

A number of NSGA-III extensions and improvements have also been pro-

posed. Jain and Deb [40] proposed an adaptive NSGA-III (A-NSGA-III) ap-

proach that was able to adaptively add and delete reference points, depending

on the crowding of population members on different parts of the current non-

dominated front. Keeping in mind the limitations of A-NSGA-III highlighted

in [39], the same authors presented an efficiently adaptive NSGA-III procedure

(A2-NSGA-III) with improvements in the reference point relocation strategy.

Yuan et al. [84] introduced θ-NSGA-III, which uses a new preference relation,

θ-dominance, to achieve balance between convergence and diversity for many-

objective optimization.

Another important extension is the U-NSGA-III [70] which is a unified evo-

lutionary algorithm capable of solving single/multi/many-objective problems.

The U-NSGA-III was able to give comparable and sometimes better performance

in comparison to a real-coded genetic algorithm (for single-objective problems),

NSGA-II (for bi-objective problems) and NSGA-III(for many-objective prob-

lems).

Wang et al. [80] introduced Two Arch2 which is an improved two archive

algorithm for many-objective optimization. The two archives are named Con-

12



vergence Archive (CA) and Diversity Archive (DA). The I ε+ indicator is used

as the selection principle for CA to improve convergence for many-objective

problems while Pareto-dominance is used as the selection principle for DA to

promote diversity. They also designed a new Lp-norm-based (p < 1) diversity

maintenance scheme. The proposed method gave competitive performance in

comparison to other many-objective optimization algorithms.

A knee point driven evolutionary algorithm (KnEA) [86] has been proposed

recently in which the knee points among the non-dominated solutions in the

current population are given preference for mating selection and environmental

selection. The authors show that preference of knee points can approximately

be seen as a bias towards larger hypervolume which assists in achieving good

convergence and diversity.

4.2. Comparative Analysis

With so many algorithms available, one may ask the question as to which al-

gorithm is the best. A number of comparative studies have been conducted for

state-of-the-art algorithms on many-objective optimization problems [32, 47].

Li et al. [47] compared eight state-of-the-art EMO algorithms on a wide range

of continuous and combinatorial many-objective optimization problems. They

concluded that there is no clear performance gap between algorithms for all the

tested problems. Instead, the authors suggested that the choice of algorithm de-

pends on the problem at hand as certain algorithms are better suited for certain

types of problems. Hadka and Reed [32] compared nine state-of-the-art algo-

rithms which included Borg MOEA, ε-MOEA, ε-NSGA-II, MOEA/D and many

others. Their results showed Borg to have a dominant performance on higher

dimensional problem instances. Lastly, Wang et al. [81] performed a compre-

hensive and systematic comparison of six algorithms that included five differ-

ent classes of MOEAs: the preference-inspired co-evolutionary algorithm called

PICEA-g, the Pareto-dominance-based algorithm NSGA-II, the ε-dominance-

based algorithm ε-MOEA, the scalarizing function-based algorithm MOEA/D,

and the indicator-based algorithm HypE. Their observation was that PICEA-g
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and HypE typically outperformed the others when the number of objectives

increased.

As so often, the development and wide use of collections of tools and prob-

lems has greatly helped over the last years not only to increase the reproducibil-

ity, but also to simply provide reference implementations to the wider commu-

nity. In addition to this, the publication of an article together with its code

also means that the bar has been raised officially, and that comparisons with

new methods can and should be performed.3 As of this writing, several frame-

works such as jMetal [23], the MOEA Framework [1], and the Shark library [36]

contain recently developed algorithms. In addition, some algorithm designers

maintain project websites where source code and raw results are made available

for everybody.

On a related note: researchers should not stop at publishing code, but they

should also thoroughly analyze code published by others. Brockhoff [9] recently

discovered a bug that negatively influences the performance in the popular EMO

algorithm IBEA. This bug has been discovered 10 years after the publication of

the original algorithm, and has been spread to many frameworks. Algorithm en-

gineers, especially those of heuristic and randomized algorithms, do not always

verify that the implementation is correct with respect to its specification. If test-

ing is done, then it is often stopped when improvements over state-of-the-art

approaches are achieved. In software engineering, activities such as comprehen-

sive testing of an implementation and documentation are everyday activities. A

more stringent programming and review process might have discovered this bug

before it influenced the perception about IBEA’s performance.

Coming back to the comparative analysis, multi-objective or many-objective

test problems are typically static and without noise. For real-world problems,

these assumptions do not necessarily hold, and consequently one might draw

wrong conclusions from comparative studies. To close this gap between research

3The should is best practice in any discipline, however, the can is not always possible

nowadays. This is to our surprise, since many EMO researchers work with software.
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Table 2: DTLZ benchmark test problems [19] for many-objective optimization.

Problem Properties [48]

DTLZ1 Linear, Multimodal

DTLZ2 Concave

DTLZ3 Concave, Multimodal

DTLZ4 Concave, Biased

DTLZ5 Concave, Degenerate

DTLZ6 Concave, Degenerate, Biased

DTLZ7 Mixed, Disconnected, Multimodal

and practice, Deb and Gupta [14] and Gaspar-Cunha et al. [29] investigated

robustness as a feature and designed benchmark problems. However, it is to

date not known whether the methods presented are suitable for many-objective

problems as well.

5. Test Problems & Applications

There are many different many-objective optimization problems that re-

searchers have tried to solve. The DTLZ (Table 2) and WFG (Table 3) test prob-

lems are continuous optimization problems and they are by far the most popular

ones. They are sets of scalable test problems used to establish the strengths and

weaknesses of many-objective algorithms. In addition, these problems contain

decision variables that can be analyzed for convergence and diversity. Most of

the algorithms mentioned in the previous section have been evaluated on these

two sets of problems. Tutum and Deb [73] considered variations of the DTLZ

functions, such as scaled objectives and the variations with constraints. Another

popular choice is the many-objective 0/1 knapsack problem [57].

One of the common criticisms of these functions is that they are artificial,

and rightly so. However, in their defence, the properties of these artificial prob-

lems vary significantly, and the reasoning is that the well-performing algorithms
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Table 3: WFG benchmark test problems [35] for many-objective optimization.

Problem Properties

WFG1 Convex, Mixed, Biased

WFG2 Convex, Disconnected, Multimodal

WFG3 Linear, Degenerate

WFG4 Concave, Multimodal

WFG5 Concave

WFG6 Concave

WFG7 Concave, Biased

WFG8 Concave, Biased

WFG9 Concave, Multimodal, Biased

are suitable for real-world problems. In addition, while these test problems

(and others) are readily available via many optimization frameworks, real-world

problems are typically not available. This is due to a variety of reasons that

range from confidentiality of data, to technical problems, and to uneasiness of

authors to publish code.

Despite these reasons, we can observe that benchmarking on real-world prob-

lems with ≥ 4 objectives is getting increasingly common—but it is still far from

being widely spread. For example, the following articles consider problems from

very different domains:

• Otake et al. [60] used NSGA-II to solve the many-objective simplified

nurse scheduling problem, which is one of the few discrete many-objective

optimization problem.

• Different many-objective algorithms have been used in the optimization

of airfoil design [83, 51].

• NSGA-III [15] and DBEA-Eps [3] were tested on constraint based engi-

neering design problems such as the 5-objective water resource manage-
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ment problem and the 10-objective general aviation aircraft design prob-

lem.

• Jaimes et al. [52] made an attempt to solve the many-objective space

trajectory design problem.

• Mkaouer et al. [54] applied NSGA-III to many-objective software refac-

toring.

• Narukawa and Rodemann [58] examined the performance of a few state-

of-the-art algorithms including NSGA-II and MOEA/D on the hybrid car

controller optimization problem with six objectives.

• Justesen and Ursem [41] investigated the novel approach of Many-Objective

Distinct Candidates Optimization using Differential Evolution (MOD-

CODE) on three centrifugal design problems having six to nine objectives.

• Bandyopadhyay and Mukherjee [6] compared different approaches (among

them a differential evolution variant) on artificial test functions and also

on the six-objective design of a factory-shed truss.

It appears that the methods and tools are finally available to tackle problems

with many-objectives in the real world.

6. Future Opportunities

Many-objective optimization is a key research area for modern day evolu-

tionary computation. This article highlights some key challenges that exist

with relation to many-objective optimization and some recent work that has

been done in trying to address these challenges.

The availability of a wide range of methods and tools to deal efficiently with

many-objective problems allows us to investigate directions that were previously

not accessible, which also includes problems in other domains. In some cases, the

technology is not yet fully matured, and we see the following major opportunities

for future research in the field of many-objective optimization:
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• the development of better visualization tools to assist researchers and de-

cision makers to navigate many-dimensional spaces,

• the integration of existing methods with multi-criteria decision making

techniques to assist decision makers [64],

• the conduct of more comprehensive comparative studies that involve the

recently developed algorithms, which is hopefully accompanied by an in-

creased availability of code,

• and the utilization of existing and future methods to solve more complex

real world problems, including dynamic and noisy problems.

The time has come to push this technology into more applications in different

fields. Ultimately, we will be able to measure the success of many-objective

evolutionary optimisation by the number of success stories written about it by

others.
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High dimensional search-based software engineering: Finding tradeoffs

among 15 objectives for automating software refactoring using NSGA-

III. In Genetic and Evolutionary Computation Conference (GECCO) 2014,

pages 1263–1270. ACM, 2014. ISBN 978-1-4503-2662-9.

[55] A. Mohammadi, M. Omidvar, X. Li, and K. Deb. Integrating user pref-

erences and decomposition methods for many-objective optimization. In

IEEE Congress on Evolutionary Computation (CEC) 2014, pages 421–428,

2014.

[56] S. Mostaghim and J. Teich. A new approach on many objective di-

versity measurement. In Practical Approaches to Multi-Objective Op-

timization, number 04461 in Dagstuhl Seminar Proceedings. Interna-

tionales Begegnungs- und Forschungszentrum für Informatik (IBFI),

Schloss Dagstuhl, Germany, 2005.

[57] T. Murata and A. Taki. Many-objective optimization for knapsack

problems using correlation-based weighted sum approach. In Evolution-

24



ary Multi-Criterion Optimization, volume 5467 of LNCS, pages 468–480.

Springer, 2009. ISBN 978-3-642-01019-4.

[58] K. Narukawa and T. Rodemann. Examining the performance of evolu-

tionary many-objective optimization algorithms on a real-world applica-

tion. In International Conference on Genetic and Evolutionary Computing

(ICGEC) 2012, pages 316–319, 2012.

[59] A. Nguyen, M. Wagner, and F. Neumann. User preferences for

approximation-guided multi-objective evolution. In Simulated Evolu-

tion and Learning (SEAL) 2014, volume 8886 of LNCS, pages 251–262.

Springer, 2014. ISBN 978-3-319-13562-5.

[60] S. Otake, T. Yoshikawa, and T. Furuhashi. Basic study on aggregation

of objective functions in many-objective optimization problems. In World

Automation Congress (WAC), 2010, pages 1–6, 2010.

[61] C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-

offs and optimal access of web sources. In 41st Annual Symposium on

Foundations of Computer Science (FOCS) 2000, pages 86–92. IEEE Press,

2000.

[62] A. Pryke, S. Mostaghim, and A. Nazemi. Heatmap visualization of pop-

ulation based multi objective algorithms. In Evolutionary Multi-Criterion

Optimization, volume 4403 of LNCS, pages 361–375. Springer, 2007. ISBN

978-3-540-70927-5.

[63] R. Purshouse and P. Fleming. On the evolutionary optimization of many

conflicting objectives. IEEE Transactions on Evolutionary Computation,

11(6):770–784, 2007. ISSN 1089-778X.

[64] R. Purshouse, K. Deb, M. Mansor, S. Mostaghim, and R. Wang. A re-

view of hybrid evolutionary multiple criteria decision making methods. In

IEEE Congress on Evolutionary Computation (CEC) 2014, pages 1147–

1154, 2014.

[65] R. C. Purshouse and P. J. Fleming. Evolutionary many-objective opti-

misation: An exploratory analysis. In IEEE Congress on Evolutionary

Computation (CEC) 2004, pages 2066–2073. IEEE Press, 2003. ISBN 0-

25



7803-7804-0.

[66] R. Rubinstein. The cross-entropy method for combinatorial and continuous

optimization. Methodology And Computing In Applied Probability, 1(2):

127–190, 1999. ISSN 1387-5841.

[67] H. Sato, H. Aguirre, and K. Tanaka. Local dominance using polar coordi-

nates to enhance multiobjective evolutionary algorithms. In IEEE Congress

on Evolutionary Computation (CEC) 2004, volume 1, pages 188–195 Vol.1,

2004.

[68] H. Sato, H. E. Aguirre, and K. Tanaka. Pareto partial dominance MOEA

and hybrid archiving strategy included CDAS in many-objective optimiza-

tion. In IEEE Congress on Evolutionary Computation (CEC) 2010, pages

1–8, 2010.

[69] O. Schutze, X. Esquivel, A. Lara, and C. A. Coello Coello. Using the aver-

aged Hausdorff distance as a performance measure in evolutionary multi-

objective optimization. IEEE Transactions on Evolutionary Computation,

16(4):504–522, 2012. ISSN 1089-778X.

[70] H. Seada and K. Deb. U-nsga-iii: A unified evolutionary optimization pro-

cedure for single, multiple, and many objectives: Proof-of-principle results.

In Evolutionary Multi-Criterion Optimization, volume 9019 of LNCS, pages

34–49. Springer, 2015. ISBN 978-3-319-15891-4.

[71] N. Srinivas and K. Deb. Multiobjective function optimization using non-

dominated sorting genetic algorithms. Evolutionary Computation, 2(3):

221–248, 1995.

[72] J. B. Tenenbaum, V. d. Silva, and J. C. Langford. A global geometric frame-

work for nonlinear dimensionality reduction. Science, 290(5500):2319–2323,

2000.

[73] C. C. Tutum and K. Deb. A multimodal approach for evolutionary multi-

objective optimisation: MEMO. COIN Report Number 2014018, pages

993–996, 2014.

[74] D. A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifi-

cations, Analyses, and New Innovations. PhD thesis, Graduate School of

26



Engineering, Air Force Institute of Technology, Air University, 1999.

[75] C. von Luecken, B. Baran, and C. Brizuela. A survey on multi-objective

evolutionary algorithms for many-objective problems. Computational Op-

timization and Applications, 58(3):707–756, 2014. ISSN 0926-6003.

[76] M. Wagner, K. Bringmann, T. Friedrich, and F. Neumann. Efficient opti-

mization of many objectives by approximation-guided evolution. European

Journal of Operational Research, page in print, 2014. ISSN 0377-2217.

[77] T. Wagner, N. Beume, and B. Naujoks. Pareto-, aggregation-, and

indicator-based methods in many-objective optimization. In S. Obayashi,

K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, editors, Evolution-

ary Multi-Criterion Optimization, volume 4403 of LNCS, pages 742–756.

Springer Berlin Heidelberg, 2007. ISBN 978-3-540-70927-5.

[78] D. Walker, R. Everson, and J. Fieldsend. Visualizing mutually nondomi-

nating solution sets in many-objective optimization. Evolutionary Compu-

tation, IEEE Transactions on, 17(2):165–184, April 2013. ISSN 1089-778X.

[79] G. Wang and H. Jiang. Fuzzy-dominance and its application in evolutionary

many objective optimization. In Computational Intelligence and Security

Workshops (CISW) 2007, pages 195–198, 2007.

[80] H. Wang, L. Jiao, and X. Yao. An improved two-archive algorithm for

many-objective optimization. IEEE Transactions on Evolutionary Compu-

tation, PP(99):1–1, 2014. ISSN 1089-778X.

[81] R. Wang, R. Purshouse, and P. Fleming. Preference-inspired coevolution-

ary algorithms for many-objective optimization. Evolutionary Computa-

tion, IEEE Transactions on, 17(4):474–494, Aug 2013. ISSN 1089-778X.

[82] L. While, P. Hingston, L. Barone, and S. Huband. A faster algorithm for

calculating hypervolume. IEEE Transactions on Evolutionary Computa-

tion, 10(1):29–38, 2006. ISSN 1089-778X.

[83] U. Wickramasinghe, R. Carrese, and X. Li. Designing airfoils using a refer-

ence point based evolutionary many-objective particle swarm optimization

algorithm. In IEEE Congress on Evolutionary Computation (CEC) 2010,

pages 1–8, 2010.

27



[84] Y. Yuan, H. Xu, and B. Wang. An improved NSGA-III procedure for evo-

lutionary many-objective optimization. In Genetic and Evolutionary Com-

putation Conference (GECCO) 2014, pages 661–668. ACM, 2014. ISBN

978-1-4503-2662-9.

[85] Q. Zhang and H. Li. MOEA/D: A multiobjective evolutionary algorithm

based on decomposition. IEEE Transactions on Evolutionary Computation,

11(6):712–731, 2007. ISSN 1089-778X.

[86] X. Zhang, Y. Tian, and Y. Jin. A knee point driven evolutionary algo-

rithm for many-objective optimization. Evolutionary Computation, IEEE

Transactions on, PP(99):1–1, 2014. ISSN 1089-778X.

[87] E. Zitzler. Evolutionary algorithms for multiobjective optimization: Meth-

ods and applications. Doctoral dissertation ETH 13398, Swiss Federal In-

stitute of Technology (ETH), 1999.

[88] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength

pareto evolutionary algorithm. Technical report, Computer Engineering

and Networks Laboratory (TIK), ETH Zurich, 2001.

[89] E. Zitzler, J. Knowles, and L. Thiele. Quality assessment of pareto set

approximations. In Multiobjective Optimization, volume 5252 of LNCS,

pages 373–404. Springer, 2008. ISBN 978-3-540-88907-6.

28


	Introduction
	Definitions & Basic Principles
	Challenges
	Non-dominated Population
	Computational Efficiency
	Recombination
	Visualization

	Many-Objective Optimization Methods
	Methods
	Comparative Analysis

	Test Problems & Applications
	Future Opportunities

