A Modified Indicator-based Evolutionary Algorithm (*m*IBEA)

Wenwen Li¹, Ender Özcan¹, Robert John¹ John H. Drake², Aneta Neumann³, Markus Wagner³

 ¹Automated Scheduling, Optimization and Planning (ASAP) University of Nottingham, UK
²Operational Research Group, Queen Mary University of London, UK
³School of Computer Science, The University of Adelaide, Australia

{wenwen.li, ender.ozcan, robert.john}@nottingham.ac.uk j.drake@qmul.ac.uk {aneta.neumann,markus.wagner}@adelaide.edu.au

June 3, 2017

Motivation

Figure: Non-dominated solutions from NSGA-II, SMS-EMOA and IBEA on DTLZ1-3 over 100 runs, except SMS-EMOA 10 runs due to high computation time.

Observations

ndi: # of non-dominated individuals.

border fraction (bf): bf = $\frac{ndi \text{ in } A_{border}}{total \text{ ndi}}$, $A_{border} := \{A | f_1 \le \theta_1 \cup f_2 \le \theta_2 \cup f_3 \le \theta_3\}$. $\theta_1 = \theta_2 = \theta_3 = 0.03$ for DTLZ1; $\theta_1 = \theta_2 = \theta_3 = 0.1$ for DTLZ2,3

Observations:

- INSGA-II can cover the whole fronts of all DTLZ1-3;
- SMS-EMOA reaches almost full coverage of the PF for DTLZ1, but leaves empty spaces on DTLZ2, 3;
- IBEA heavily concentrates in corners on DTLZ1 and DTLZ3, while show clear gaps on DTLZ2;
- $bf_{IBEA} > bf_{SMS-EMOA} > bf_{NSGA-II}$ on DTLZ1-3;
- $ndi_{NSGA-II} \gg ndi_{IBEA}$ on DTLZ1 and 3;

Observations

ndi: # of non-dominated individuals.

border fraction (bf): bf = $\frac{ndi \text{ in } A_{border}}{total \text{ ndi}}$, $A_{border} := \{A | f_1 \le \theta_1 \cup f_2 \le \theta_2 \cup f_3 \le \theta_3\}$. $\theta_1 = \theta_2 = \theta_3 = 0.03$ for DTLZ1; $\theta_1 = \theta_2 = \theta_3 = 0.1$ for DTLZ2,3

Observations:

- INSGA-II can cover the whole fronts of all DTLZ1-3;
- SMS-EMOA reaches almost full coverage of the PF for DTLZ1, but leaves empty spaces on DTLZ2, 3;
- IBEA heavily concentrates in corners on DTLZ1 and DTLZ3, while show clear gaps on DTLZ2;
- $bf_{IBEA} > bf_{SMS-EMOA} > bf_{NSGA-II}$ on DTLZ1-3;
- $ndi_{NSGA-II} \gg ndi_{IBEA}$ on DTLZ1 and 3;

Question: why does IBEA deteriorate on DTLZ1 and 3 so severely?

Guess: Similar as the hypervolume drops of SMS-EMOA during the search [1]?

Judt, L., Mersmann, O., Naujoks, B. (2013) Non-monotonicity of Observed Hypervolume in 1-Greedy S-Metric Selection. Wiley Online Library, 277–290.

IBEA VS mIBEA

mIBEA and IBEA difference: mIBEA removes dominated solutions before scaling objective values. No new parameters is introduced in mIBEA.

1 Initialisation;

Randomly generate the initial population with population size μ ;

- 2 while (!Stopping Criteria) do
- 3 Remove dominated solutions using fast non-dominated sorting (NSGA-II);

1) rank the solutions in P: Ranking rankedP = new Ranking(P);

2) get the non-dominated solutions: P = rankedP.getSubfront(0);

4 Objective values scaling ;

1) find the lower $(\underline{b_i} = min_{x \in P} f_i(x))$ and upper $(\overline{b_i} = max_{x \in P} f_i(x))$ bound of each objective *i*.;

2) increase the upper bound $\overline{b_i}' = \underline{b_i} + \rho * (\overline{b_i} - \underline{b_i});$

3) scale each objective to the interval [0 1]; $f'_i = (f_i(x) - \underline{b}_i)/(\overline{b}'_i - \underline{b}_i);$

- 5 Fitness assignment (hypervolume difference) using scaled objectives;
- 6 Environmental Selection (Survival);

1) remove the solutions with least hypervolume loss iteratively;

2) update fitness values of all the remaining individuals;

- 7 Mating Selection;
- 8 Variation;

end

Algorithm 1: mIBEA Pseudo Code

Overall Results

With the same default settings as IBEA,

Figure: Non-dominated solutions from IBEA and mIBEA on DTLZ1-3.

*m*IBEA clearly improves the front coverage of IBEA on DTLZ1 and 3, but not on DTLZ2. (objective values evolving for DTLZ1: [100, 150] \rightarrow [0,0.5], DTLZ2: [2, 5] \rightarrow [0,1], DTLZ3: [500, 1500] \rightarrow [0,1])

Wenwen Li 1 , Ender Özcan 1 , Robert John 1 John H.

Performance Analysis w.r.t. different scaling factor ρ with population size $\mu = 100$

June 3, 2017 7 / 11

Performance analysis w.r.t. different scaling factor ρ with population size $\mu = 1000$

Wenwen Li¹, Ender Özcan¹, Robert John¹ John H.

mIBEA

June 3, 2017 8 / 11

Performance Statistics and Running Time Comparison

Table: Performance Comparison

Table: Running Time Comparison

ho = 2.0	hypervolume		$\epsilon +$			Average Running Time per Run (in minutes)			
$\mu = 100$	IBEA	mIBEA	IBEA	mIBEA		$\mu = 100$		$\mu = 1000$	
DTLZ1	$0.1773_{0.08}$	$0.7338_{0.10}$	0.29190.02	$0.0771_{0.07}$	$\rho = 2.0$	IBÉA	<i>m</i> IBEA	IBEA	mIBEA
DTLZ2	$0.4215_{0.00}$	0.4217 _{0.00}	0.0724 _{0.00}	0.0726 _{0.00}	DTLZ1	0.15	0.08	7.86	1.22
DTLZ3	$0.0011_{0.01}$	0.2623 _{0.13}	0.42170.00	$0.4514_{0.31}$	DTLZ2	0.15	0.10	7.62	1.46
DTLZ4	0.30230.12	0.28760.14	0.35960.31	0.38630.34	DTLZ3	0.15	0.06	8.10	0.24
DTLZ5	0.09300 00	0.09310.00	0.01290.00	0.01170.00	DTLZ4	0.14	0.11	7.98	1.56
DTLZ6	0.07890.01	0.08330 01	0.04640.02	0.02710.01	DTLZ5	0.16	0.11	8.01	0.97
DTI 77	0 25120.05	0 26930 04	1 00141 06	0 70170 77	DTLZ6	0.15	0.11	8.04	0.21
DILLI	0.20120.05	0.20330.04	1.00111.00	0.10110.77	DTLZ7	0.16	0.10	8.03	1.15

Summary:

- ρ affects *m*IBEA significantly, but little impact on IBEA since all the solutions already collapse to the extreme points;
- μ has little influence on IBEA while solving DTLZ1 (as all the solutions are located in the border area), but deteriorates on DTLZ3. mIBEA improves with larger μ.
- mIBEA outperforms IBEA on both convergence (hypervolume, ε+) and front coverage perspectives. However, mIBEA doesn't beat NSGA-II on most DTLZ problems.
- Over 8-fold speed-ups are obtained from *m*IBEA comparing with IBEA

Figure: Solution distribution of mIBEA on DTLZ1-3

- *m*IBEA still have uneven distribution while solving DTLZ1 and gaps on DTLZ2 and 3 (see above figure).
- Systematically examine the courses of the gaps of IBEA's solution fronts on DTLZ2 and 3;
- Combining the investigation of hypervolume drops in SMS-EMOA to see if the gaps are caused by the computation of hypervolume;
- Improve *m*IBEA and SMS-EMOA by redirecting its attention away from extreme points.

Thank you!

Q & A