THEORETICAL RESULTS ON BET-AND-RUN AS AN

INITIALISATION STRATEGY

Andrei Lissovoi (UoS), Dirk Sudholt, (UoS)
Markus Wagner (UoA), and Christine Zarges (AU)

The PRIFYSGOL P9 THE UNIVERSITY
| Ooiversity BERYSTWYTH fADELAIDE

- — —— UNIVERSITY

Sheffield.




HOUSTON, WE HAVE A PROBLEM...

Restarts to the rescue!

How to fix a computer?

=Reinstall the OS

»Run a virus scan

JRestart the
computer

 NRESTART WILL FIX YOUR
coMPUTE.n'megenerat.n L




BACKGROUND

Restarted Search

> Become integral part of combinatorial search

> Complete methods: avoid heavy-tailed distribution (Gomes et al.
JAR'OO)

> Incomplete methods: diversification technique
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RESTARTS: BACKGROUND




BACKGROUND

Restart Strategies

> Complexity of designing appropriate restart strategy
> Two common approaches:
1. Use restarts with a certain probability

2. Employ fixed schedule of restarts

@@



BACKGROUND

Restart Strategies — Feasibility

>

>
>
>

Theoretical work on fixed-schedule restart strategies (Luby et al.'93)
Practical studies with SAT and CP solvers

Geometrically growing restarts limits (Wu et al. CP'O7)

(Audemard et al. CP'12) argued fixed schedules are sub-optimal for SAT

Restart Strategies — Optimization

>

>

>

Classical optimization algorithms are often deterministic
As such, does not really benefit from restarts

Modern optimization algorithms have randomized components
Memory constraints & parallel computation introduce new characteristics

(Ruiz et al."16) different mathematical programming formulations to provide
different starting points for the solver




LIMITED RUNTIME BUDGET

Restart Strategies

> Assume we are given a time budget t to run an algorithm
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LIMITED RUNTIME BUDGET

Restart Strategies

> Assume we are given a time budget t to run an algorithm
> Two natural options:

1. Single—run strategy: use all of the time t for a single run of the
algorithm

2. Multi—run strategy: make k runs each with runtime t/k

> (Fischetti et al.'14) generalizes this strategy into Bet—And—Run for
MIPs



LIMITED RUNTIME BUDGET
BET-AND-RUN BY FISCHETTI AND MONACI (2014)

Phase 1 Phase 2
of length k-t of length t,=t-k-t,
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Another way to interpret this:
degenerated island model, without migration, and the greedy removal of islands




BET—AND-RUN: recent related work

90009 | 99

Sampling Phase + Long Run

>

>

(Fischetti et al. OR'14) introduced diversity in starting conditions of
MIP Experimentally good results with k=5

(de Perthuis de Laillevault et al. GECCO'15) analysed 1+1-EA on
OneMax, t=1step. A small additive runtime gain, hardly noticeable in
practice.

(Friedrich, Kotzing, Wagner AAAI'17) studled TSP and MVC
Experimentally good results with Restarts,,,

(Kadioglu, Sellmann, Wagner LION"17) learned reactive restart
strategies that considers runtime features.

(Lissovoi, Sudholt, Wagner, Zarges GECCO’17)

theoretical results for a family of pseudo-boolean functions.
Summary: non-trivial k and t, are necessary to find the global
optimum efficiently.




THEORY




OUTLINE

We analyse the Bet-And-Run strategy:
« with Randomised Local Search (and in some cases a (1+1) EA)
* on asimple artificial benchmark function.

Aiming to answer:
* How does the algorithm behave with given k, t;, t,?
* Expected time to find the optimum?
 Expected fitness aftert = k - t; + ty iterations?
* How to choose t; and k?




BET-AND-RUN and RANDOMISED LOCAL SEARCH

Given a budget of t =k - t; + t, fitness evaluations:

1. Run kinstances of RLS independently for t; steps:
a. Initialise a solution x uniformly at random.
b. fori=2tot;do
I. Lety be a mutation of x, flipping one bit chosen uniformly at random.
ii. If f(y) = f(x), replace x with y.
2. Choose run with highest fitness f(x).
3. Continue only this run for another t, steps.
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PLATEAU / SLOPE FUNCTION FAMILY

Individuals are strings of n bits. 4
Number of 1-bits affects fitness:

* Plateau of fitness h when x|, = n/2 &

° Slope when |X|1 >n/2 plateau =
Family characterised by h>n/2 "

n/2 | I > #ones

The plateau is easy to find... 0 n/2. h n

¢ ..and hard to escape from. W /
The slope is initially worse... _ | o ablxl > n/2

P Y ) { h otherwise

* .. but leads to the optimum.



A SINGLE RUN OF RLS
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INITIAL PHASE MUST BE LONG ENOUGH

When t, is large enough, an on-slope run will climb above the plateau.

Consider f_ with h >n/2 + n° log n. For any constant € > 0,

* Ift;2(1+€) nIn(n/(2n — 2h)), (and k =clog n fora constant c>0,)
With probability at least 1 = (3/4) — O(1/n), the optimum is found after
O(kn log n) fitness evaluations.

e Ift;<(1-¢) nIn(n/(2n — 2h)), (and k < poly(n),)

With probability at least 1 — 27% = ™", the optimum is never found.

The proof uses Fitness Levels with Tail Bounds (Witt ‘14).




FIXED BUDGET ANALYSIS OF A SINGLE RLS RUN

Where do we expect to be after t iterations?

* If initialised on the plateau, still on the plateau.

* If initialised “safely” on the slope, some distance up the slope.
» Fixed budget analysis of RLS on OneMax (Jansen/Zarges “14) applies in this
case.

* If initialised on the first point of the slope, split almost equally.
* ltis slightly easier to get to the plateau.

Combined, the expected fitness after t iterations of a single RLS run is:
° E(f,(x))2n/2+h/2=(n/4-1)-(1-1/n)
* E(f.(x))<n/2+h/2=(n/4-0.5n"logn)-(1-1/n)"+Q(n°)




FIXED BUDGET FOR BET-AND-RUN

When k and t: are sufficiently large, at least one run reaches f, (x ) > h with
high probability. We bound the expected fitness of the bet- and -run
strategy using the fitness achieved by a slope run after t;+t; iterations.

The expected fitness of RLS with a bet-and-run strategy, using

clog n <k < poly(n) and t; 2 (1+€)n In(n/(2n-2h)), after t = k - t; + t, steps is:
* E(f(x))2n=(n/2=dn%)-(1-1/n)" k1 —(3/4)kn

o E(f(x)) < (1+) (n = (n/2 = n%°logn) - (1 — 1/n)t~ &) 4 o(1)

forallt=0,and d, [1, € > 0 constant.

Consequence: should not set t; or k excessively large.



EXCESSIVE T4 IS DETRIMENTAL
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SUMMARY




SUMMARY

» Mathematically proven: bet-and-run can be an
effective countermeasure when facing problems
with deceptive regions.

* Complementary experiments are in the paper.

Future work
* Multi-modal functions

» Characterise progress variance of runs in Phase 1 so
that this can be exploited in theory and practise.

Phase 1
of length t;
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LIMITED RUNTIME BUDGET
BET-AND-RUN BY FISCHETTI AND MONACI (2014)

Phase 1 Phase 2
of length k-t,  of length t,=t-k-t,

A A

"@ Notes
® Single-run:

% 3 * k=1

= g Multi-run with restarts from scratch:
) t=t/kand t,=0
b t -t

1 2
I } =¥ time
start end of total

bet-and-run time budget t

Another way to interpret this:
degenerated island model, without migration, and the greedy removal of islands




