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HOUSTON, WE HAVE A PROBLEM... 

Restarts to the rescue!



BACKGROUND

➢ Become integral part of combinatorial search
➢ Complete methods: avoid heavy-tailed distribution (Gomes et al. 

JAR’00)
➢ Incomplete methods: diversification technique

Restarted Search



RESTARTS: BACKGROUND



BACKGROUND

➢ Complexity of designing appropriate restart strategy
➢ Two common approaches:

1. Use restarts with a certain probability 
2. Employ fixed schedule of restarts

Restart Strategies
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BACKGROUND

Restart Strategies – Feasibility
➢ Theoretical work on fixed-schedule restart strategies (Luby et al.’93)
➢ Practical studies with SAT and CP solvers
➢ Geometrically growing restarts limits (Wu et al. CP’07)
➢ (Audemard et al. CP’12) argued fixed schedules are sub-optimal for SAT

Restart Strategies – Optimization
➢ Classical optimization algorithms are often deterministic

As such, does not really benefit from restarts
➢ Modern optimization algorithms have randomized components

Memory constraints & parallel computation introduce new characteristics
➢ (Ruiz et al.’16) different mathematical programming formulations to provide 

different starting points for the solver



LIMITED RUNTIME BUDGET

➢ Assume we are given a time budget t to run an algorithm
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LIMITED RUNTIME BUDGET

➢ Assume we are given a time budget t to run an algorithm
➢ Two natural options: 

1. Single–run strategy: use all of the time t for a single run of the 
algorithm

2. Multi–run strategy:   make k runs each with runtime t/k
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LIMITED RUNTIME BUDGET

➢ Assume we are given a time budget t to run an algorithm
➢ Two natural options: 

1. Single–run strategy: use all of the time t for a single run of the 
algorithm

2. Multi–run strategy:   make k runs each with runtime t/k
➢ (Fischetti et al.’14) generalizes this strategy into Bet–And–Run for 

MIPs

Restart Strategies
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LIMITED RUNTIME BUDGET
BET-AND-RUN BY FISCHETTI AND MONACI (2014)

Another way to interpret this:
degenerated island model, without migration, and the greedy removal of islands



BET–AND–RUN: recent related work

➢ (Fischetti et al. OR’14) introduced diversity in starting conditions of 
MIP Experimentally good results with k = 5

➢ (de Perthuis de Laillevault et al. GECCO’15) analysed 1+1-EA on 
OneMax, t1=1step. A small additive runtime gain, hardly noticeable in 
practice.

➢ (Friedrich, Kötzing, Wagner AAAI’17) studied TSP and MVC
Experimentally good results with Restarts1%

40

➢ (Kadioglu, Sellmann, Wagner LION’17) learned reactive restart 
strategies that considers runtime features.

➢ (Lissovoi, Sudholt, Wagner, Zarges GECCO’17) 
theoretical results for a family of pseudo-boolean functions. 
Summary: non-trivial k and t1 are necessary to find the global 
optimum efficiently.

Sampling Phase + Long Run



THEORY



OUTLINE

We analyse the Bet-And-Run strategy:
• with Randomised Local Search (and in some cases a (1+1) EA)
• on a simple artificial benchmark function.

Aiming to answer:
• How does the algorithm behave with given k, t₁, t₂?
• Expected time to find the optimum?
• Expected fitness after t = k · t₁ + t₂ iterations?
• How to choose t₁ and k?



BET-AND-RUN and RANDOMISED LOCAL SEARCH

Given a budget of t = k · t₁ + t₂ fitness evaluations:

1. Run k instances of RLS independently for t₁ steps:
a. Initialise a solution x uniformly at random.
b. for i = 2 to t₁ do

i. Let y be a mutation of x, flipping one bit chosen uniformly at random.
ii. If f(y) ≥ f(x), replace x with y.

2. Choose run with highest fitness f(x).
3. Continue only this run for another t₂ steps.



PLATEAU / SLOPE FUNCTION FAMILY

• Individuals are strings of n bits.
• Number of 1-bits affects fitness:

• Plateau of fitness h when |x|1 ≤ n/2
• Slope when |x|1 > n/2

• Family characterised by h > n/2

• The plateau is easy to find…
• … and hard to escape from.

• The slope is initially worse...
• … but leads to the optimum.



A SINGLE RUN OF RLS
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INITIAL PHASE MUST BE LONG ENOUGH

When t₁ is large enough, an on-slope run will climb above the plateau.

Consider f
h
 with h > n/2 + n0.5 log n. For any constant ε > 0,

• If t₁ ≥ (1+ε) n ln(n/(2n − 2h)),     (and k ≥ c log n for a constant c > 0,)
With probability at least 1 − (3/4)k − O(1/n), the optimum is found after

O(kn log n) fitness evaluations.
• If t₁ ≤ (1-ε) n ln(n/(2n − 2h)),      (and k ≤ poly(n),)

With probability at least 1 − 2−k − e−Ω(√n), the optimum is never found.

The proof uses Fitness Levels with Tail Bounds (Witt ‘14).



FIXED BUDGET ANALYSIS OF A SINGLE RLS RUN

Where do we expect to be after t iterations?

• If initialised on the plateau, still on the plateau.
• If initialised “safely” on the slope, some distance up the slope.

• Fixed budget analysis of RLS on OneMax (Jansen/Zarges ‘14) applies in this 
case.

• If initialised on the first point of the slope, split almost equally.
• It is slightly easier to get to the plateau.

Combined, the expected fitness after t iterations of a single RLS run is:
• E(f

h
(x

t
)) ≥ n/2 + h/2 − (n/4 − 1) · (1 − 1/n)t

• E(f
h
(x

t
)) ≤ n/2 + h/2 − (n/4 − 0.5 n0.5 log n) · (1 − 1/n)t + Ω(n0.5)



FIXED BUDGET FOR BET-AND-RUN

When k and t₁ are sufficiently large, at least one run reaches f
h
(x

t₁
) > h with 

high probability. We bound the expected fitness of the bet-and-run 
strategy using the fitness achieved by a slope run after t₁+t₂ iterations.

The expected fitness of RLS with a bet-and-run strategy, using
c log n ≤ k ≤ poly(n) and t₁ ≥ (1+ε)n ln(n/(2n-2h)), after t = k · t₁ + t₂ steps is:

• E(f(x)) ≥ n − (n/2 − d n0.5) · (1 − 1/n)t − (k−1)t₁ − (3/4)k n

• E(f(x)) ≤ (1+�) (n − (n/2 − n0.5 log n) · (1 − 1/n)t − (k−1)t₁) + o(1)

for all t ≥ 0, and d, �, ε > 0 constant.

Consequence: should not set t₁ or k excessively large.



EXCESSIVE T₁ IS DETRIMENTAL



SUMMARY



SUMMARY

• Mathematically proven: bet-and-run can be an 
effective countermeasure when facing problems 
with deceptive regions.

• Complementary experiments are in the paper.

Future work
• Multi-modal functions
• Characterise progress variance of runs in Phase 1 so 

that this can be exploited in theory and practise.

Exploitable 
erraticism 
using restarts: 

time
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LIMITED RUNTIME BUDGET
BET-AND-RUN BY FISCHETTI AND MONACI (2014)

Another way to interpret this:
degenerated island model, without migration, and the greedy removal of islands


