
Simple On-the-Fly Parameter Selection Mechanisms for Two
Classical Discrete Black-Box Optimization Benchmark Problems

Carola Doerr

Sorbonne Université, CNRS

Laboratoire d’informatique de Paris 6 (LIP6)

Paris, France

Markus Wagner

The University of Adelaide

Optimisation and Logistics, School of Computer Science

Adelaide, Australia

ABSTRACT

Despite significant empirical and theoretically supported evidence

that non-static parameter choices can be strongly beneficial in evo-

lutionary computation, the question how to best adjust parameter

values plays only a marginal role in contemporary research on

discrete black-box optimization. This has led to the unsatisfactory

situation in which feedback-free parameter selection rules such as

the cooling schedule of Simulated Annealing are predominant in

state-of-the-art heuristics, while, at the same time, we understand

very well that such time-dependent selection rules can not perform

as well as adjustment rules that do take into account the evolution

of the optimization process. A number of adaptive and self-adaptive

parameter control strategies have been proposed in the literature,

but did not (yet) make their way to a broader public. A key obstacle

seems to lie in their rather complex update rules.

The purpose of our work is to demonstrate that high-performing

online parameter selection rules do not have to be very complicated.

More precisely, we experiment with a multiplicative, comparison-

based update rule to adjust the mutation rate of a (1+1) Evolutionary

Algorithm.We show that this simple self-adjusting rule outperforms

the best static unary unbiased black-box algorithm on LeadingOnes,

achieving an almost optimal speedup of about 18%. We also observe

promising performance on the OneMax benchmark problem.

CCS CONCEPTS

• Theory of computation → Theory of randomized search

heuristics; Optimization with randomized search heuristics;

KEYWORDS

Evolutionary Computation, Parameter Selection, Parameter Control

ACM Reference Format:

Carola Doerr and Markus Wagner. 2018. Simple On-the-Fly Parameter Se-

lection Mechanisms for Two Classical Discrete Black-Box Optimization

Benchmark Problems. In GECCO ’18: Genetic and Evolutionary Computa-

tion Conference, July 15–19, 2018, Kyoto, Japan. ACM, New York, NY, USA,

8 pages. https://doi.org/10.1145/3205455.3205560

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’18, July 15–19, 2018, Kyoto, Japan

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5618-3/18/07. . . $15.00

https://doi.org/10.1145/3205455.3205560

1 INTRODUCTION

One of the best known randomized black-box optimization tech-

niques is Simulated Annealing [20]. Simulated Annealing builds on

the Metropolis heuristic, a randomized search method that aims

to overcome the risk of getting stuck in local optima by allowing

the search to continue in points that are worse than the current

best solution. The probability to “accept” such an inferior solution

depends on the absolute difference in function values and upon

a parameter T , which is often referred to as the temperature of

the system. The improvement of Simulated Annealing over the

Metropolis algorithm is a non-static choice of this temperature T .
By decreasing T over time, the search algorithm converges from

an exploratory behavior to a more and more greedy hill-climber,

which exploits the good regions identified during the earlier phases.

Numerous successful applications and more than 42,000 citations

of [20] witness that this idea to control the temperature during

the optimization process can have an impressive impact on the

performance.

It is today quite well understood that non-static parameter

choices can be quite beneficial also for evolutionary computation

(EC) methods, cf. [6, 18]. The question how to adjust the param-

eters, however, is largely open. Already the selection of suitable

static parameter values is a very complex problem that has given

rise to a number of sophisticated parameter tuning techniques; it

is not for nothing that the parameter selection problem is coined

the “Achilles’ heel of evolutionary computation” in [14]. Finding

methods that automatically detect and track optimal parameter

values over all stages of the optimization process are the long-term

vision of research on parameter control techniques.

Adaptive parameter choices are indispensable in continuous op-

timization, and therefore used in most state-of-the-art heuristics. In

discrete domains, however, the situation is quite different. A number

of different parameter control techniques have been experimented

with in the literature, but so far none of them has been able to

establish itself as a standard technique. Quite the contrary, the

vast majority of research papers on discrete black-box optimization

problems use static parameters values [18]. In light of the success

story of Simulated Annealing, this situation is quite unsatisfactory.

A potential reason for the discrepancy between the commonly

acknowledged benefits of non-static parameter selection schemes

and its low degree of utilization may be the complexity of the pa-

rameter control techniques that predominate in the EC literature:

these are often based on self-adaptation, hyper-heuristics, or princi-

ples from machine learning, cf. [18] and [6] for surveys of empirical

and theoretical results, respectively.

https://doi.org/10.1145/3205455.3205560
https://doi.org/10.1145/3205455.3205560

GECCO ’18, July 15–19, 2018, Kyoto, Japan Carola Doerr and Markus Wagner

1.1 Our Results

We analyze in this work one of the simplest ways to incorporate

feedback from the optimization process into the selection of suitable

parameter values: success-based multiplicative update mechanisms.

To abstract away potential inter-dependencies between multiple

parameters, we concentrate on the control of a single parameter, the

mutation rate of a (1+1) Evolutionary Algorithm (EA) that does not

evaluate offspring that are identical to their parents (cf. Section 2 for

details and motivation). The update of the mutation rate depends

only on whether or not the parent individual is replaced by the

offspring. When no improvement is found, the mutation rate p is

decreased to bp (with the idea to be more conservative), and it is

increased to Ap otherwise (motivated by the desire to make even

more progress by searching at a larger distance). A and b are hyper-

parameters that satisfy A > 1 and 0 < b < 1. This multiplicative

control technique is entirely comparison-based, a highly desirable

property for online parameter selection mechanisms [14].

We investigate the performance of the adaptive (1+1) EA variant,

which we call the (1 + 1) EAα , on OneMax and on LeadingOnes.

The experiments on OneMax confirm that, for a very broad range

of update strengths, the (1+1) EAα is capable of identifying optimal

parameter values “on-the-fly”. This leads to average optimization

times that are very close to being optimal among all unary unbiased

black-box algorithms.
1

For OneMax in reasonable problem dimensions n ≤ 20, 000, the

relative advantage of non-static parameter choices is only around

2%, and thus not very pronounced. The main task of the (1+1) EAα
is therefore to identify good (i.e., in the context of OneMax, low)

mutation rates, and to not get distracted by a potential desire to

greedily increase themutation rate during the optimization. In order

to investigate the ability of the (1 + 1) EAα to not only identify but

to also track optimal parameter values that change quite drastically

during the optimization process, we also regard its performance

on the classic LeadingOnes benchmark. For LeadingOnes, the

optimal number of bits to flip depends on the fitness of the current-

best individual. It is n for x with Lo(x) = 0, n/2 for search points of

fitness 1, and decreases to 1 for search points of Lo-values ≥ n/2,
cf. Lemma 1. Our empirical results confirm that, again for a broad

range of hyper-parameters, the (1 + 1) EAα is able to find and to

track these optimal mutation rates. About 62% of all 450 tested

configurations with 1 < A ≤ 2.5 and 0.4 < b < 1 and around

39% of all 2, 450 configurations with 1 < A ≤ 6 and 0 < b < 1

outperform Randomized Local Search, the best unary unbiased

black-box algorithm with static mutation rates, by at least 10%.

Some configurations achieve an almost optimal advantage of around

18%.

Disclaimer. A common critique of fundamental research on

OneMax and similar benchmark problems is that such “sterile”

environments are not very representative for typical applications

of EAs. Based on the results presented in this work, we, of course,

do not know to what extend the advantages of the success-based

multiplicative update rule applies to more complex optimization

problems. It has been argued, however, that results for OneMax

1
We recall that unary unbiased algorithms are those that sample all search points

uniformly at random from the whole search space or from unbiased distributions that

depend on exactly one previously evaluated search point. A distribution is unbiased if

it does not discriminate between bit positions, not between bit values [22].

can serve, at the very least, to verify if some important properties of

parameter control techniques are satisfied [13, 26]. In this sense, our

results can be seen as a “proof of concept” for the largely unexplored

potential of parameter control.

We also wish to point out that multiplicative update rules have

of course been studied much prior to this work, e.g., [1, 3, 7, 15,

19, 21]. The appealing aspect of our study lies in the simplicity

of the algorithm and problems, which help to nicely illustrate the

working principles of this promising parameter update rule. We

hope that the convincing and detailed empirical evaluation serves

as a motivation to experiment with parameter control techniques.

The case of Simulated Annealing has shown that paradigm changes

are possible, and we feel that it is time for EC methods to overcome

static and feedback-free parameter selection mechanisms.

2 ALGORITHMS AND BENCHMARKS

Our study aims at quantifying the positive effects of online param-

eter selection. To remove any unwanted side effects, we therefore

remove the population size and selective pressure as parameters,

and concentrate on adapting the mutation rate in the two classical

black-box optimization algorithms Randomized Local Search (RLS)

and the (1+1) Evolutionary Algorithm (EA). We use this section to

describe the algorithms and benchmark problems studied in our

work. For the hasty reader, we wish to point out that we regard

a variant of the (1 + 1) EA in which we ensure that an offspring

does not equal its direct parent (i.e., we do not allow offspring to

be copies of their parent’s genotype).

Notation. The description of the algorithms assumes the max-

imization of a pseudo-Boolean function f : {0, 1}n → R as opti-

mization task. By [n] we abbreviate the set {1, 2, . . . ,n}, and we let

[0..r] := {0} ∪ [r].

2.1 RLS and the Resampling (1+1) EA

RLS and the (1 + 1) EA are (1+1) schemes. That is, they always

maintain one previously queried solution x , sample from it exactly

one offspring y, and use elitist selection; that is, y replaces x if and

only if f (y) ≥ f (x). The difference of RLS and the (1+ 1) EA lies in

the generation of y. While RLS creates the offspring y by flipping

exactly one bit in x that is chosen uniformly at random, the (1+1) EA
creates y by standard bit mutation. That is, y = (y1, . . . ,yn) is
selected by first copying x and then flipping each bit with some

positive probabilityp, independently of all other bits. The parameter

p is referred to as the mutation rate. A standard choice for p is 1/n,
which results in an expected number of one bit flip per iteration. Put

differently, an average iteration of the (1+1) EA with mutation rate

1/n behaves like an RLS iteration, with the difference that standard

bit mutation is a global variation operator: in every iteration, every

search point x ∈ {0, 1}n has a positive probability to be sampled.

Our main interest is in studying adaptive choices of p, but before we
discuss our adaptation rules, we recall one important observation

about standard bit mutation.

It is not very difficult to see that standard bit mutation can be

identically defined by first choosing a step size (also known as mu-

tation strength) ℓ from the binomial distribution Bin(n,p) and then

applying the flipℓ variation operator (Algorithm 1), which samples

On-the-Fly Parameter Selection Mechanisms GECCO ’18, July 15–19, 2018, Kyoto, Japan

Algorithm 1: flipℓ chooses ℓ different positions and flips the

entries in these positions.

1 Input: x ∈ {0, 1}n , ℓ ∈ N;
2 Select ℓ different positions i1, . . . , iℓ ∈ [n] u.a.r.;
3 y ← x ;

4 for j = 1, ..., ℓ do yi j ← 1 − xi j ;

ℓ pairwise different indices uniformly at random and creates an off-

spring y from x by flipping the bits in these ℓ positions and copying

the values from x elsewhere. Note that with this description, RLS

is the algorithm that uses in each iteration the operator flip
1
, i.e., it

chooses ℓ = 1 deterministically.

It was noted in [17, 24, 27] that the literate implementation of

standard bit mutation is inadequate for most practical purposes,

since the probability that an offspring is identical to its direct parent

equals Bin(n,p)(0) = (1 − p)n , which for p = 1/n converges very

quickly to 1/e ≈ 36.8%. Unless we are dealing with very noisy

function evaluations, which is not the situation regarded here, such

offspring do not advance the optimization process, as they do not

carry any new information about the problem instance. An efficient

implementation of the (1+ 1) EA would therefore avoid to generate

such offspring. This is easily possible, as all we need to do is to

re-sample the step size ℓ from Bin(n,p) until we get a non-zero

value. This is identical to sampling ℓ from the conditional distribu-

tion Bin>0(n,p), which assigns probability 0 to the step size 0 and

probability Bin>0(n,p)(k) =
(n
k
)
pp (1 − p)n−k/(1 − (1 − p)n) to any

positive step size k > 0. As argued in [24], this resampling strategy

seems to be a common implementation of standard bit mutation in

plus strategies like the (1+ 1) EA. To distinguish this interpretation

of the (1 + 1) EA from the one classically regarded in the theory

of evolutionary computation literature, it is named (1 + 1) EA>0

in [24].

2.2 Self-Adaptive Mutation Rates

As mentioned in the introduction, our main interest is in the study

of performance gains that can be achieved by a non-static choice

of the mutation rate p. To this end, we investigate the following

simple update rule. If an iteration was successful, i.e., if it produced

an offspring y that replaces x , we increase the mutation rate p by a

constant multiplicative factor A ≥ 1. That is, we replace p by Ap
if f (y) ≥ f (x) holds. If, on the other hand, y is discarded (f (y) <
f (x)), we decreasep tobp, whereb ≤ 1 is again some fixed constant.

We cap the value of p to ensure that it is always greater than 1/n2
and at most 1/2. The initial value of p is set to p0, for some constant

p0 > 0. This gives the (1 + 1) EAα (A,b,p0), which we summarize

in Algorithm 2. Note that the (1 + 1) EAα (A = 1,b = 1,p0) is the
(1 + 1) EA>0 with static mutation rate p = p0.

In our experiments we compare the performance of the (1 +
1) EAα with a variant of RLS that uses a non-static choice of the

step size. This variant will be described in Section 3.

2.3 OneMax and LeadingOnes

As benchmark problems, we select OneMax and LeadingOnes,

since for these two problems we understand quite well how the

Algorithm 2: The (1 + 1) EAα with update strengths A and b
and initial mutation rate p0 ∈ [1/n2, 1/2] for the maximization

of a pseudo-Boolean function f : {0, 1}n → R
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and

compute f (x);
2 Set p = p0;

3 Optimization: for t = 1, 2, 3, . . . do

4 Sample ℓ from Bin>0(n,p);
5 y ← flipℓ(x);
6 evaluate f (y);
7 if f (y) ≥ f (x) then
8 x ← y and p ← min{A · p, 1/2}
9 else

10 p ← max{b · p, 1/n2}

optimal mutation strengths depend on the state of the optimiza-

tion process, so that we have a solid baseline against to which we

can compare the performance of the (1 + 1) EAα . OneMax and

LeadingOnes are both problems with a unique global optimum

z ∈ {0, 1}n .
OneMax. For every target string z ∈ {0, 1}n , the OneMax func-

tion Omz assigns to each search point x ∈ {0, 1}n the number of

positions inwhichx and z agree, i.e., Omz (x) := |{i ∈ [n] | xi = zi }|.
Maximizing Omz corresponds to minimizing the Hamming distance

between x and z.
It is well known that every mutation-based algorithm (in the

unary unbiased sense promoted in [22]) needs Ω(n logn) function
evaluations, on average, to optimize OneMax. In this asymptotic

sense, all RLS and all static (1 + 1) EA variants considered in this

work are optimal, since they are all unary unbiased algorithms and

they all achieve a Θ(n logn) expected optimization time. We will

nevertheless see that the actual (i.e., non-asymptotic) running time

can differ substantially for the different algorithms. We will discuss

more precise running time statements in Section 3 below.

LeadingOnes is the problem of optimizing an unknown func-

tion of the type Loz,σ : {0, 1}n → R,x 7→ max{i ∈ [0..n] | ∀j ∈
[i] : xσ (i) = zσ (i)}, where z is an unknown length-n bit string and

σ : [n] → [n] an unknown permutation (one-to-one map) of the

positions. That is, Loz,σ (x) is the length of the longest common

prefix between z and x in the order determined by σ .
Every (1+1) elitist [11] and every unary unbiased [22] black-box

algorithm needsΩ(n2) function evaluations, on average, to optimize

LeadingOnes. This bound is matched by RLS and the (1 + 1) EA,
as we shall discuss in the next section.

3 THEORETICAL PERFORMANCE LIMITS

To establish bounds against which we can compare the (1+ 1) EAα ,

we now take a closer look at the best possible performance that any

mutation-based algorithm can achieve on OneMax and Leadin-

gOnes. In both cases, this performance is obtained by a variant of

RLS that replaces the static choice ℓ = 1 classically used by RLS

by a fitness-dependent step size ℓ. More precisely, it is known that,

for OneMax, such an RLS variant has a performance that can not

be worse than an optimal unary unbiased black-box algorithm by

GECCO ’18, July 15–19, 2018, Kyoto, Japan Carola Doerr and Markus Wagner

more than an additive o(n) term [9]. For LeadingOnes a similar

statement can be derived from the methods introduced in [2, 9], cf.

Section 3.2.

3.1 OneMax

As mentioned above and summarized in [9], we know quite well

how RLS and the (1+1) EA perform on the OneMax problem. From

the known bounds, we can compute theoretical performance limits

of the (1 + 1) EAα . This is the focus of this section.

For static parameter values, i.e., for arbitrary p0 ∈ [1/n2, 1/2]
and A = b = 1, the expected optimization time of the (1 + 1) EAα
on OneMax cannot be better than that of RLS, which is equal to

n ln(n) + (γ − ln(2)) + o(1) ≈ n lnn − 0.1159n [4] (γ = 0.5772 . . .

denotes the Euler-Mascheroni constant). Likewise, for adaptive

parameter values (i.e., for arbitrary values of A, b, and p0) the
expected optimization time of the (1+1) EAα is bounded from below

by the performance of a best unary unbiased black-box algorithm,

which satisfies n ln(n) − αn ± o(n) for a constant α that is between

0.2539 and 0.2665 [9].

The above-mentioned values are asymptotically optimal running

times. In order to obtain absolute performance limits for concrete

problem dimensions, we regard the drift-maximizing RLS variant

studied in [9]. Although it cannot be formally proven that this algo-

rithm is indeed optimal, the result in [9] states that its performance

cannot be much worse than that of the best possible unary unbi-

ased (i.e., mutation-based) black-box algorithm. We even conjecture

that the drift-maximizing RLS, which we call RLSopt,OM, is indeed

optimal within this class.

RLSopt,OM is the RLS variant that modifies the best-so-far so-

lution x by applying to it the variation operator flipℓ for a value

of ℓ that maximizes the expected progress that can be obtained in

one iteration. This expected progress is often referred to as drift,

hence the name “drift maximizer”. It is not difficult to see that the

expected progress E[max{Om(flipℓ(x))−Om(x), 0}] of flipℓ applied
to x equals

ℓ∑
i= ⌈ℓ/2⌉

(n−Om(x)
i

) (
Om(x)
ℓ−i

)
(2i − ℓ)(n

ℓ

) . (1)

This expression depends only on the problem dimension n and

the function value Om(x), but not on the structure of the search

point x . For every n and every possible function value f ∈ [0..n],
we can therefore abbreviate the progress-maximizing choice of ℓ

by kopt,OM(n, f). With this abbreviation, RLSopt,OM is Algorithm 3.

As proven in [9], the value of kopt,OM(n, f) equals 1 whenever
f ≥ 2n/3. For general f , however, we do not have a simple to

evaluate closed form expression to describe kopt,OM(n, f). For this
reason an approximation of kopt,OM(n, f) is used in [9]. Since here

in this work we are not interested in asymptotic bounds, but rather

absolute values for concrete problem dimensions, we do not need

to approximate kopt,OM(n, f) but can work with the exact drift max-

imizing choice. Using these values, we can evaluate the expected

performance of RLSopt,OM empirically. This is our approach for the

results presented in Section 4. These empirical averages are quite

close to the above-mentioned asymptotic lower bound presented

in [9].

Algorithm 3: The drift-maximizing algorithm RLSopt,OM

1 Sample x ∈ {0, 1}n uniformly at random and compute Om(x);
2 for t = 1, 2, 3, . . . do

3 ℓ ← kopt,OM(n,Om(x));
4 y ← flipℓ(x);
5 if f (y) ≥ f (x) then x ← y;

3.2 LeadingOnes

For LeadingOnes the known theoretical bounds are as follows.

RLS needs 1 + n2/2 function evaluations, on average, for its opti-

mization. This bound is also a lower bound for the (1+ 1) EAα with

static parameter choices; i.e., for arbitrary p0 ∈ [1/n2, 1/2] and
A = b = 1. For the classical (1 + 1) EA, which samples ℓ from the

unconditional binomial distribution Bin(n,p) (and may therefore

sample ℓ = 0), the best static choice is p ≈ 1.59n, which gives an ex-

pected optimization time of about 0.77n2, while for the (1+1) EA>0

it holds that the smaller the mutation rate, the better performance

we obtain [16]. More precisely, it holds that the expected running

time of the (1 + 1) EA>0 converges to 1 + n2/2 when the mutation

rate p converges to zero.

In [2], also optimal adaptive mutation rates have been com-

puted for the classical (1+1) EA. It is shown there that the (1+1) EA
using at each point x the optimal mutation rate (n − Lo(x))/n has

an expected running time on LeadingOnes of 0.68n2 ±O(n).
The adaptive (1 + 1) EA variant from [2] clearly looses perfor-

mance for iterations in which the offspring equals its parent. It is

therefore natural to ask for the best performance that a—possibly

adaptive—unary unbiased black-box algorithm can achieve. As far

as we know, such a best-possible mutation-based algorithm has not

been explicitly reported in the literature. It turns out, however, that

we can generalize mathematical statements proven in [2] and [9]

to design such an optimal unary unbiased black-box algorithm for

LeadingOnes.

Before describing this algorithm in detail, we note that already

allowing 1- and 2-bitflips (i.e., flipℓ with ℓ = 1 and ℓ = 2) decreases

the optimal 1 + n2/2 expected optimization time of static unary

unbiased algorithms to about 0.4233n2 [23] (the fact that flipℓ is de-
fined slightly different in [23] has a negligible impact on this result).

This running time can be further reduced by allowing larger step

sizes. We investigate the limits of this approach in the remainder

of this section.

To compute the progress-maximizing variant of RLS, we could,

similarly to the OneMax case, compute the expected progress of

flipℓ when applied to a search point x . For LeadingOnes, however,
it suffices to maximize the probability of making progress [2], which

is, in general, much easier than computing the expected progress.

When applied to a search point x , the offspring y created from x by

flipping ℓ bits satisfies Lo(y) > Lo(x) if and only if the (Lo(x)+1)-st
bit is flipped but none of the first Lo(x) bits. The probability of this

event, for uniformly chosen bit flips, equals

P
[
Lo(flipℓ(x)) > Lo(x)

]
=

ℓ

n − Lo(x)

(
n − Lo(x)
ℓ

)
/
(
n

ℓ

)
(2)

=

(
n − Lo(x) − 1
ℓ − 1

)
/
(
n

ℓ

)
.

On-the-Fly Parameter Selection Mechanisms GECCO ’18, July 15–19, 2018, Kyoto, Japan

In line with the notation used for the OneMax case, we abbreviate

the value ℓ that maximizes expression (2) by kopt,LO(n, Lo(x)). The
following lemma seems to be well known in the theory of evolu-

tionary computation community, but, as far as we know, it has not

been mentioned explicitly.

Lemma 1 (kopt,LO(n, Lo(x))). For all n ∈ N and for all x ∈ {0, 1}n
it holds that kopt,LO(n, Lo(x)) = ⌊n/(Lo(x) + 1)⌋ .

With these values, we can study the expected running time

of RLSopt,LO, which is Algorithm 3 with line 2 replaced by “ℓ ←
kopt,LO(n, Lo(x))”. Combining Lemma 1 with the characterization

of unary unbiased mutation operators provided in [9, Lemma 1]

and an extension of the results proven in [2] to unary unbiased

black-box algorithms, it is not difficult to show the following theo-

rem, which, intuitively speaking, states that RLSopt,LO is optimal

among all mutation-based black-box algorithms for LeadingOnes.

Furthermore, this optimality does not only apply to the overall op-

timization time, but also to all intermediate target values. We thus

obtain the following statement about the fixed-target performance

of RLSopt,LO.

Theorem 2. For LeadingOnes, the expected number of function

evaluations needed by RLSopt,LO to obtain a search point of function

value at least i equals

T (RLSopt,LO, Lo, i) := 1 +
1

2

i−1∑
j=0

(
n

kopt,LO(n, j)

)
/
(

n − j − 1
kopt,LO(n, j) − 1

)
= 1 +

1

2

i−1∑
j=0

(
n

⌊n/(j + 1)⌋

)
/
(

n − j − 1
⌊n/(j + 1)⌋ − 1

)
.

For all n and all i this performance is optimal among all unary unbi-

ased black-box algorithms. That is, for any unary unbiased black-box

algorithm A the expected time needed by A to reach a search point of

LeadingOnes value ≥ i is at least as large as that of RLSopt,LO.

We did not find an easy to evaluate closed form for

T (RLSopt,LO, Lo, i). We can nevertheless evaluate this sum numeri-

cally, and obtain that for n →∞ the expected optimization time of

RLSopt,LO seems to converge to around 0.388...n2, cf. Table 1. For

n = 10, 000 the value is still around 0.3884n2.

4 SUMMARY OF EXPERIMENTAL RESULTS

With the description of the algorithms and benchmark problems in

place, we can now report our empirical results for the (1 + 1) EAα .

4.1 Grid search

In a first step, we are interested in the sensitivity of the (1+ 1) EAα
with respect to the two update strengths A and b. To analyze the

influence of these two hyper-parameters, we perform a grid search,

in which we run the (1 + 1) EAα for various combinations of A
and b. For these experiments, we always initialize the mutation rate

as p0 = 1/n. In Figures 1a to 1f we report for each configuration

the average optimization times of 101 independent runs of these

algorithms on OneMax (Figures 1a and 1b) and on LeadingOnes

(Figures 1d, 1e, 1f). In these plots, the parameters are chosen as

follows. For OneMax and for LeadingOnes with n ≤ 250, we vary

A between 1.0 and 6.0, in multiples of 0.1, and we choose b between

0.00 and 1.00, in multiples of 0.02. For LeadingOnes with n = 500

we restrict the values to 1 ≤ A ≤ 3 and 0.4 ≤ b ≤ 1. That is,

Figure 1f is a zoom into the upper left region of the full grid search.

These graphics are to be read as follows. As so-called heat maps,

we visualize in color the optimization times of the (1 + 1) EAα
variants; that is, we plot the average number of fitness evaluations

that these algorithms needed in order to locate the global optimum.

We use a binning of colors to emphasize the visibility of regions and

gradients. For example, the large green regions indicate the config-

urations for which the (1 + 1) EAα performs best. Also, the quick

succession of colors in the top right corner shows that, beyond some

threshold values for A and b, small changes in the configuration

can cause large changes in the performance.

For OneMax we first observe that the heat maps have a very sim-

ilar structure across the different dimensions, cf. Figures 1a and 1b.

In addition to the results shown in Figure 1 we also computed heat

maps for OneMax with problem dimension n = 100, n = 1, 000,

and n = 2, 000 and for each of these heat maps the overall struc-

ture is very similar to that plotted in Figures 1a and 1b. Also for

LeadingOnes the figures are quite similar across the dimensions,

cf. Figures 1d, 1e, and 1f (recall that Figure 1f is a zoom into upper

left corner). We also observe that the performance landscapes for

OneMax is quite flat; i.e., the bulk of the configurations achieves a

very similar performance.

For both problems, OneMax and LeadingOnes, we see that for

large values of A and b the average optimization times become

worse very quickly. In Figure 1c we therefore zoom into the most

interesting region of high-performing configurations and display

only results for configurations that achieve an average optimization

time that is at most 150, 000 (for comparison, the (1+1) EA>0 needs

around 135, 700 iterations, on average, on this problem instance,

and RLS 125, 000 iterations, cf. Table 1). This zoom increases the

granularity of the color scheme, and allows to detect more structure

within this region.

As a next step, we compare the average running times with those

of the (1+1) EA>0 and RLS.We observe that a significant number of

configurations outperform the static (1+1) EA>0. For LeadingOnes,

the average optimization times of different algorithms can be found

in Table 1 and for OneMax we note that the average optimization

time of the (1 + 1) EA>0 is around 4, 750 for n = 500 and about

16, 630 for n = 1, 500. Several configurations also outperform RLS,

but for OneMax the 101 runs do not suffice to make a statistically

sound comparison, since the advantage of adaptive step sizes is

bounded by around 2% for all tested dimensions. For LeadingOnes,

however, the advantages over RLS are quite significant, as Figure 2

demonstrates. In this plot, the lowermost two lines illustrate the

fraction of all 2,450 configurations with 1 < A ≤ 6 and 0 < b < 1

that yield a better average performance on LeadingOnes than

RLS. In this figure, the x-axis indicates the percentage by which

the algorithms are better than RLS, and on the y-axis we plot the
fraction of the configurations that outperform RLS by at least this

much. That is, we see that among all 2,450 configurations around

67% have an average optimization time below n2/2. Between 37%

(n = 100) and 41% (n=250) of all configurations are better than RLS

by at least 10%.

When we restrict the configurations to those 450 that satisfy

1 < A ≤ 2.5 and 0.4 ≤ b < 1 (three uppermost lines), around 78%

GECCO ’18, July 15–19, 2018, Kyoto, Japan Carola Doerr and Markus Wagner

(a) OneMax with n = 500 (b) OneMax with n = 1500 (c) LeadingOnes with n = 500

(d) LeadingOnes with n = 100 (e) LeadingOnes with n = 250 (f) LeadingOnes with n = 500

Figure 1: Optimization times of the (1 + 1) EAα for different update strengths A and b, averaged over 101 independent runs

of them are better than RLS, around 62% are better by at least 10%,

around 30% outperform RLS by at least 15%, and still almost 20%

of the configurations are better by at least 16%. From an algorithm

design point of view this is very good news: finding good hyper-

parameters is not very difficult for this problem. We also see that

the numbers are very similar across all three tested dimensions n =
100, 250, 500, indicating that this surprisingly good performance

might translate to larger dimensions.

As we have proven in Section 3, the best possible running time on

LeadingOnes (among all unary unbiased black-box algorithms, and

hence in particular among all (1+1) EA and RLS variants) is achieved

by RLSopt,LO. For the considered problem dimensions, RLSopt,LO is

better, in expectation, than RLS by around 22.3%, cf. Table 1. This

advantage over RLS is of course also the maximal improvement that

any (1+1) EAα variant can achieve over RLS. For all dimensions, we

observe that between 2 and 4% of the configurations are better than

RLS by at least 18%. No configuration achieves a 20% improvement.

Note here that this does not come as a surprise: even if the (1+1) EA
chooses in each iteration the for this state optimal mutation rate,

its performance still suffers from the random choice of the step

sizes. This risk is eliminated in RLS and RLSopt by the deterministic

choice of the mutation strength ℓ = 1 and ℓ = kopt,Lo(n, Lo(x)),
respectively. We can therefore not expect any configuration, or,

more generally, any evolutionary algorithm, to achieve the same

performance as RLSopt,LO.

Figure 2: Fraction of all 2,450 (450) configurations with 1 <

A ≤ 6 and 0 < b < 1 (1 < A ≤ 2.5 and 0.4 ≤ b < 1) that

outperform RLS on LeadingOnes by at least x%

With respect to the (1 + 1) EA>0, the comparison is even more

impressive. About 73% of all 2, 450 configurations and around 82% of

the 450 restricted configurations with 1 < A ≤ 2.5 and 0.4 ≤ b < 1

have a better performance on LeadingOnes than the (1 + 1) EA>0.

On-the-Fly Parameter Selection Mechanisms GECCO ’18, July 15–19, 2018, Kyoto, Japan

About 64% (76% for the restricted hyper-parameters) are better by

at least 10% and still around 14% (47%) are better, on average, by

more than 20%. The best improvements over the (1 + 1) EA>0 are

around 26%, but we should keep in mind here that the numbers

are averages for 101 independent runs only. We will therefore do a

more thorough investigation of selected configurations in the next

subsection, but note here already that we see a quite consistent

behavior in Figure 2, raising our confidence that these results are

not much skewed by the relatively low number of independent

runs.

For OneMax, around 90% of all configurations perform better

than the (1 + 1) EA>0, and between 64% (n = 100) and 83% (n =
2, 000) are better by at least 30%. The best configurations achieve

an improvement of up to around 40%.

4.2 Selected Configurations

To substantiate the comparisons made in Section 4.1 and to inves-

tigate how the results translate to larger problem dimensions, we

now take a closer look at some selected configurations.

For LeadingOnes, the results of this comparison are summarized

in Table 1, where we report both the average optimization times T
and the relative values T /n2. For RLS and RLSopt,LO the numbers

in Table 1 are computed from the exact running time statements

(cf. Section 3), which are all indeed very close to the results that we

obtain empirically. All other numbers in Table 1 are averages over

1, 001 and 101 (starred values) independent runs, respectively.

In addition to the (1+ 1) EA>0, we list 4 different configurations.

The (1 + 1) EAα with A = 1.3,b = 0.75 and with A = 1.2,b = 0.85

are examples for configurations that show a good (but not empiri-

cally best) performance in the grid search conducted in Section 4.1.

We also add to the comparison the configuration A = 2,b = 0.5,

a seemingly intuitive configuration used also in different context,

e.g., in the adaptive choice of the population size in [21]. The con-

figuration A = 1.11,b = 0.66 corresponds to the 1/5-th success

rule with update strength 1.5, a very common adaptation rule in

continuous domain, cf. [1, 5, 19] and references therein.

We observe that the performances are quite stable over the tested

dimensions. The two selected configurations A = 1.3,b = 0.75 and

A = 1.2,b = 0.85 are better by around 18% than RLS, on all tested

dimensions. The doubling/halving rule A = 2,b = 0.5 achieves a

15 − 17% performance gain over RLS, while the 1/5-th success rule

withA = 1.11,b = 0.66 achieves an improvement over RLS of about

7 − 10%.
As an important consequence, the results of this section suggest

that a tuning of the hyper-parametersA and b on smaller dimension

is possible. In addition, the stability of the results indicates that

similar results as those presented in Section 4.1 are likely to apply

also to larger problem dimensions.

For OneMax, we conducted experiments for the same config-

urations as in Table 1, for problem dimensions up to n = 3, 000.

The results are similar to those for LeadingOnes in that also

for OneMax the relative performance gains observed in small

dimensions seem to transfer to larger ones. It is remarkable that all

the selected configurations, on average over 1, 001 independent

runs, achieve a performance that is very close to that of RLS, and

in some cases even outperform it. The following table summarizes

Figure 3: Average and optimal mutation strengths for dif-

ferent Lo(x) values (n = 500, 10 independent runs of the

(1 + 1) EAα with A = 1.2, b = 0.85, and p0 = 1/n)

selected results. For convenience, we also compute for each empiri-

cal average T the value c := 100T /(n lnn). Starred results are for

101 independent runs, all other results are averages over 1, 001 runs.

n = 500 n = 1000 n = 3000

Algorithm T c T c T c
RLS 3,050 98.16 6,871 99.47 23,814 99.15

RLSopt 2,974 95.72 6,690 96.85 23,507 97.87

(1+1) EA>0 4,756 153.06 10,574 153.07 37,256 155.11

(1+1) EAα (A=1.2, b=0.85) 3,059 98.45 6,751 97.73 23,558* 98.08

(1+1) EAα (A=1.3, b=0.75) 3,033 97.61 6,801 98.45 23,715* 98.73

(1+1) EAα (A=2.0, b=0.5) 3,013 96.97 6,753 97.76 23,027* 95.87

(1+1) EAα (A=1.11, b=0.66) 3,039 97.80 6,749 97.70 24,011* 99.97

4.3 Zooming into Typical Runs

We finally want to understand how well the selected mutation

rates resemble the optimal ones. Our benchmark problem is the

500-dimensional LeadingOnes function. We store for 10 indepen-

dent runs of the (1 + 1) EAα with A = 1.2 and b = 0.85 and for

each iteration the Lo-value of a best-so-far solution along with

the mutation strength ℓ that has been chosen in this iteration,

i.e., the number of bits that have been flipped by the flipℓ opera-

tor to create the offspring of this iteration. We then average for

each function value Lo(x) over the ℓ-values that have been used

in iterations that started with this fitness value. Figure 3 plots

these averages for 3 ≤ Lo(x) < 100 (blue, ragged curve), along

with the corresponding kopt,LO(n, Lo(x)) values (smooth red curve).

The (1 + 1) EAα seems to sample indeed almost optimal mutation

strengths. For Lo(x) ∈ {0, 1, 2} we note that the values are smaller

than kopt,LO(n, Lo(x)), but this is explained by the initialization of

the mutation rate with p0 = 1/n, which forces the algorithm to first

increase this rate to a close-to-optimal value. This process decreases

the average considerably. For values Lo(x) ≥ 100, the two curves

are almost indistinguishable and have therefore been removed from

the illustration.

5 CONCLUSIONS

We hope to contribute with our work to a more widespread experi-

mentation and use of non-static parameter selection mechanisms

in discrete optimization contexts. We are confident that significant

GECCO ’18, July 15–19, 2018, Kyoto, Japan Carola Doerr and Markus Wagner

n = 100 n = 250 n = 500 n = 1000 n = 1500

Algorithm T T /n2 T T /n2 T T /n2 T T /n2 T T /n2
RLSopt,LO 3,883 38.83% 24,273 38.8368% 97,102 38.8408% 388,427 38.8427% 873,981 38.8436%

RLS 5,001 50.01% 31,251 50.0016% 125,001 50.0004% 500,001 50.0001% 1,125,001 50.0000%

(1+1) EA>0 5,401 54.01% 33,817 54.1072% 135,782 54.3128% 544,288 54.4288% 1,216,448* 54.0644%

(1+1) EAα (A=1.2, b=0.85) 4,063 40.63% 25,497 40.7952% 101,976 40.7904% 409,820* 40.9820% 921,900* 40.9733%

(1+1) EAα (A=1.3, b=0.75) 4,185 41.85% 25,731 41.1696% 102,985 41.1940% 413,518* 41.3518% 931,313* 41.3917%

(1+1) EAα (A=2.0, b=0.5) 4,195 41.95% 26,247 41.9952% 104,193* 41.6772% 416,362* 41.6362% 932,791* 41.4574%

(1+1) EAα (A=1.11, b=0.66) 4,495 44.95% 28,277 45,2432% 114,814* 45.9256% 448,815* 44.8815% 1,016,830* 45.1924%

Table 1: Average optimization times for LeadingOnes. Exact bounds for RLS and RLSopt,LO, empirical averages over 1,001

(*=101) independent runs otherwise

performance gains are possible, for a broad number of applications.

We have shown in this work that already quite simple parame-

ter control mechanisms can give almost optimal performance. On

LeadingOnes, significant performance gains over the best static

parameter values were possible for a broad range of multiplicative

update rules.

Much more sophisticated parameter control techniques, includ-

ing a number of portfolio-based methods inspired by the multi-

armed bandit literature have been proposed and analyzed in the

literature, by experimental [12, 13, 25] and theoretical [8, 23] means.

Developing a rigorous understanding of which update scheme to

favor under which circumstances is the ultimate goal of our re-

search. First comparisons with the above-mentioned techniques

are quite favorable for the success-based multiplicative update rule;

a rigorous comparison is left for future work.

As a more immediate research question, it would be desirable

to understand how the performance of the (1 + 1) EAα scales with

very large dimensions, by means of an empirical comparison and/or

a mathematical running time analysis.

Acknowledgments. The authors would like to thank Eduardo

Carvalho Pinto for providing his implementation of the (1+ 1) EAα
and his contributions to a preliminary experimentation with the

multiplicative parameter control mechanism.

Our work was supported by a public grant as part of the

Investissement d’avenir project, reference ANR-11-LABX-0056-

LMH, LabEx LMH, and by the Australian Research Council project

DE160100850.

REFERENCES

[1] Anne Auger. 2009. Benchmarking the (1+1) evolution strategy with one-fifth suc-

cess rule on the BBOB-2009 function testbed. In Companion Material GECCO’09.

ACM, 2447–2452.

[2] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. 2010. Optimal Fixed

and Adaptive Mutation Rates for the LeadingOnes Problem. In PPSN’10 (LNCS),

Vol. 6238. Springer, 1–10.

[3] Benjamin Doerr and Carola Doerr. 2015. Optimal Parameter Choices Through

Self-Adjustment: Applying the 1/5-th Rule in Discrete Settings. In GECCO’15.

ACM, 1335–1342.

[4] Benjamin Doerr and Carola Doerr. 2016. The Impact of Random Initialization on

the Runtime of Randomized Search Heuristics. Algorithmica 75 (2016), 529–553.

[5] Benjamin Doerr and Carola Doerr. 2018. Optimal Static and Self-Adjusting

Parameter Choices for the (1+ (λ, λ)) Genetic Algorithm. Algorithmica 80 (2018),

1658–1709.

[6] Benjamin Doerr and Carola Doerr. 2018. Theory of Parameter Control Mecha-

nisms for Discrete Black-Box Optimization: Provable Performance Gains Through

Dynamic Parameter Choices. In Theory of Randomized Search Heuristics in Dis-

crete Search Spaces, Benjamin Doerr and Frank Neumann (Eds.). Springer. To

appear.

[7] Benjamin Doerr, Carola Doerr, and Timo Kötzing. 2016. Provably Optimal Self-

Adjusting Step Sizes for Multi-Valued Decision Variables. In PPSN’16 (LNCS),

Vol. 9921. Springer, 782–791.

[8] Benjamin Doerr, Carola Doerr, and Jing Yang. 2016. k -Bit Mutation with Self-

Adjusting k Outperforms Standard Bit Mutation. In PPSN’16 (LNCS), Vol. 9921.

Springer, 824–834.

[9] Benjamin Doerr, Carola Doerr, and Jing Yang. 2016. Optimal Parameter Choices

via Precise Black-Box Analysis. In GECCO’16. ACM, 1123–1130.

[10] Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing Yang. 2017. The

(1+ λ) Evolutionary Algorithm with Self-Adjusting Mutation Rate. In GECCO’17.

ACM, 1351–1358.

[11] Carola Doerr and Johannes Lengler. 2016. The (1+1) Elitist Black-Box Complexity

of LeadingOnes. In GECCO’16. ACM, 1131–1138.

[12] Álvaro Fialho, Luís Da Costa, Marc Schoenauer, andMichèle Sebag. 2008. Extreme

Value Based Adaptive Operator Selection. In PPSN’08 (LNCS), Vol. 5199. Springer,

175–184.

[13] Álvaro Fialho, Luís Da Costa, Marc Schoenauer, and Michèle Sebag. 2009. Dy-

namic Multi-Armed Bandits and Extreme Value-Based Rewards for Adaptive

Operator Selection in Evolutionary Algorithms. In LION’09 (LNCS), Vol. 5851.

Springer, 176–190.

[14] Álvaro Fialho, Luís Da Costa, Marc Schoenauer, and Michèle Sebag. 2010. Analyz-

ing bandit-based adaptive operator selection mechanisms. Annals of Mathematics

and Artificial Intelligence 60 (2010), 25–64.

[15] Thomas Jansen, Kenneth A. De Jong, and Ingo Wegener. 2005. On the Choice of

the Offspring Population Size in Evolutionary Algorithms. Evolutionary Compu-

tation 13 (2005), 413–440.

[16] Thomas Jansen and Christine Zarges. 2011. Analysis of evolutionary algorithms:

from computational complexity analysis to algorithm engineering. In FOGA’11.

ACM, 1–14.

[17] Thomas Jansen and Christine Zarges. 2014. Performance analysis of randomised

search heuristics operating with a fixed budget. Theoretical Computer Science 545

(2014), 39–58.

[18] G. Karafotias, M. Hoogendoorn, and A.E. Eiben. 2015. Parameter Control in Evo-

lutionary Algorithms: Trends and Challenges. IEEE Transactions on Evolutionary

Computation 19 (2015), 167–187.

[19] Stefan Kern, Sibylle D. Müller, Nikolaus Hansen, Dirk Büche, Jiri Ocenasek, and

Petros Koumoutsakos. 2004. Learning probability distributions in continuous

evolutionary algorithms - a comparative review. Natural Computing 3 (2004),

77–112.

[20] Scott Kirkpatrick, C. D. Gelatt, and Mario P. Vecchi. 1983. Optimization by

Simulated Annealing. Science 220, 4598 (1983), 671–680.

[21] Jörg Lässig and Dirk Sudholt. 2011. Adaptive population models for offspring

populations and parallel evolutionary algorithms. In FOGA’11. ACM, 181–192.

[22] Per Kristian Lehre and Carsten Witt. 2012. Black-Box Search by Unbiased Varia-

tion. Algorithmica 64 (2012), 623–642.

[23] Andrei Lissovoi, Pietro Simone Oliveto, and John Alasdair Warwicker. 2017. On

the runtime analysis of generalised selection hyper-heuristics for pseudo-boolean

optimisation. In GECCO’17. ACM, 849–856.

[24] Eduardo Carvalho Pinto and Carola Doerr. 2017. Discussion of a More Practice-

Aware Runtime Analysis for Evolutionary Algorithms. In EA’17. 298–305.

[25] Dirk Thierens. 2005. An Adaptive Pursuit Strategy for Allocating Operator

Probabilities. In GECCO’05. ACM, 1539–1546.

[26] Dirk Thierens. 2009. On benchmark properties for adaptive operator selection.

In Companion Material GECCO’09. ACM, 2217–2218.

[27] Jano I. van Hemert and Thomas Bäck. 2002. Measuring the Searched Space

to Guide Efficiency: The Principle and Evidence on Constraint Satisfaction. In

PPSN’02 (LNCS), Vol. 2439. Springer, 23–32.

	Abstract
	1 Introduction
	1.1 Our Results

	2 Algorithms and Benchmarks
	2.1 RLS and the Resampling (1+1) EA
	2.2 Self-Adaptive Mutation Rates
	2.3 OneMax and LeadingOnes

	3 Theoretical Performance Limits
	3.1 OneMax
	3.2 LeadingOnes

	4 Summary of Experimental Results
	4.1 Grid search
	4.2 Selected Configurations
	4.3 Zooming into Typical Runs

	5 Conclusions
	References

