
A fitness landscape analysis of 
the Travelling Thief Problem

Mohamed El Yafrani, Marcella Martins, Mehdi El Krari, 
Markus Wagner, Myriam Delgado, Belaïd Ahiod, Ricardo Lüders

Genetic and Evolutionary Computation Conference - GECCO ’18
July 15 - 19, 2018, Kyoto, Japan



Outline

● Introduction
● Background

○ The Traveling Thief Problem (TTP)
○ Fitness Landscapes & Local Optima Networks

● Environment Settings
○ Local Search Heuristics
○ Instance Classifications & Generation

● Results & Analysis
○ Topological properties of LON
○ Degree Distributions
○ Basins of Attraction

● Conclusion

2



Introduction

3



Introduction

Objectives:

● Understand the search space structure of the TTP using basic local search 
heuristics with Fitness Landscape Analysis;

● Distinguish the most impactful non-trivial problem features (exploring the Local 
Optimal Network representation);
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Introduction

Motivation:

● The TTP -> important aspects found in real-world optimisation problems 
(composite structure, interdependencies,...);

● Only few studies have been conducted to understand the TTP complexity;
● LONs -> useful representation of the search space of combinatorial (graph theory);
● LONs -> characteristics correlate with the performance of algorithms.
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Background

The Traveling Thief Problem:
<<Given a set of items dispersed among a set of cities, a thief with his rented knapsack 
should visit all of them*, only once for each, and pick up some items. What is the best path 
and picking plan to adopt to achieve the best benefits ?>>
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Background
The Traveling Thief Problem:

A TTP solution is represented with two components:
1. The path (eg. x={A, E, C, F, B, D, A})
2. The picking plan (eg. y={15, 16, 5, 17, 20, 9, 11, 12})
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Background
The Traveling Thief Problem parameters:

● W: The Knapsack capacity
● R: The renting rate
● vmax/vmin: Maximum/Minimum Velocity

Maximize the total gain:
G(x ; y) = total_items_value(y) − R ∗ travel_time(x ; y)

The more the knapsack gets heavier, the more the thief becomes slower:
current_velocity = vmax − current_weight ∗ (vmax − vmin) / W
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Background
Fitness Landscapes:

A graph G=(N,E) where nodes represent solutions, and edges represent the existence 
of a neighbourhood relation given a move operator.

⚠ Defining the neighbourhood matrix 
for N can be a very expensive.

⚠ Hard to extract useful information 
about the search landscape from G.
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Background
Local Optima Networks:

A simplified landscape representation...

✓ Nodes: Local optima / Basins of attraction
✓ Edges: Connectivities between the local optima.

Two basins of attraction are connected 
if at least one solution within a basin 
has a neighbour solution within the 
other given a defined move operator.
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Background
Local Optima Networks:

● A simplified landscape representation…

● Provides a very useful representation of the search space

● Exploit data by using metrics and indices from graph theory
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Environment Settings
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Environment Settings
Local Search Heuristics:

● Embedded neighbourhood structure
○ Generates a problem specific neighbourhood function
○ Maintains homogeneity of the TTP solutions
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Environment Settings

Local Search Heuristics:
Two local search variants:

1. J2B: 2-OPT move
2. JIB: Insertion move } +  One-bit-flip operator

one-bit-flip

2-OPT / Insertion

keep the best in the entire NKP neighborhood
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Environment Settings

● TTP classification and parameters
○ Number of cities (n);
○ Item Factor (Ƒ);
○ Profit-value correlation (Ƭ);
○ Knapsack capacity class (C);

● Instance Generation
○ 27 classes of the TTP are considered; 
○ For each class, 100 samples are generated;
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1. uncorrelated (unc) 
2. uncorrelated with similar weight (usw) 
3. bounded strongly correlated (bsc)



Environment Settings

How we conduct our experiments to achieve the objectives?

1 - Propose a problem classification based on knapsack capacity and the profit-weight 
correlation;

2 - Create a large set of enumerable TTP instances; 

3-  Generate a LON for each instance using two hill climbing variants;

4-  Explore/exploit LONs using specific measures.
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Results & Analysis
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Topological properties of LONs

Mean number of vertices (      ) & edges (      ):

●     &       decrease by increasing the knapsack capacity.
● → hardness of search decreases when the knapsack capacity increases
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Topological properties of LONs

Mean average degree    :

● increases with the capacity class
○ Decreases when the capacity class reaches 6
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Topological properties of LONs

Mean average clustering coefficients :

●  : Average clustering coefficients of generated LONs
●  : Average clustering coefficients of corresponding random graphs

○ Random graphs with the same number of vertices and mean degree

● Local optima are connected in two ways 
Dense local clusters and sparse 
Interconnections
○ Difficult to find and exploit
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Topological properties of LONs

Mean path lengths   :

● All the LONs have a small mean path length
○ Any pair of local optima can be connected by traversing only few other local 

optima.
●      is proportional to log(    )
● A sophisticated local search-based metaheuristics

 with exploration abilities can move from a local
 optima to another only in few iterations
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Topological properties of LONs

Connectivity rate π / number of subgraphs    :

● The connectivity rate shows that all the LONs generated using J2B are fully connected
● Some of the LONs generated using JIB are disconnected graphs with a significantly high 

number of non-connected components
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Degree Distributions
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Degree Distributions
Degree distributions decay slowly for 
small degrees, while their dropping 
rate is significantly faster for high 
degrees

Majority of 
LO have a 
small
number of 
connections
, while a few 
have a 
significantly 
higher
number of 
connection.



Degree Distributions
Do the distributions fit a power-law as 
most of the real world networks?

J2B -> A power law cannot be generalised 
as a plausible model to describe the degree 
distribution for all the landscape.

Kolmogorov-Smirnov always fails to reject 
the exponential distribution as a plausible 
model for all the samples considered.
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Basins of attraction
Average of the relative size of the basin corresponding to the global maximum for each capacity C over 
the 100 TTP instances for J2B (left) and JIB (right).
In all cases: as the capacity C gets larger, the global optima’s basins get larger. (search space size per 
instance: 46080)
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Basins of attraction

Correlation of fitness (x-axis) and basin size (y-axis);
J2B (top) and JIB (bottom).

Good correlation can be exploited: get a rough idea 
(on-the-fly) about achievable performance, and based on 
this restart dynamically. 
[our conjecture, to be implemented]
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Conclusions
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● Enumerable TTP instances: local area networks created for two heuristics

● Identified characteristics for hardness:
○ Disconnected components
○ Sometimes low correlation of fitness and basin size 

-> allows for fitness-based restarts?
○ Easier: large knapsack capacities (larger basins of attraction and overall 

smaller networks)

● Future work
○ There are (sometimes) many local optima with very small basins 

-> Tabu search based on tracked paths and distances to local optima?

● Source code: https://bitbucket.org/elkrari/ttp-fla/ 

Conclusions and Future Directions

30
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Thank you !
Source code: https://bitbucket.org/elkrari/ttp-fla/
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