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ABSTRACT
Local Optima Networks are models proposed to understand the
structure and properties of combinatorial landscapes. The �tness
landscape is explored as a graph whose nodes represent the local
optima (or basins of attraction) and edges represent the connec-
tivity between them. In this paper, we use this representation to
study a combinatorial optimisation problem, with two interdepend
components, named the Travelling Thief Problem (TTP). The ob-
jective is to understand the search space structure of the TTP using
basic local search heuristics and to distinguish the most impact-
ful problem features. We create a large set of enumerable TTP
instances and generate a Local Optima Network for each instance
using two hill climbing variants. Two problem features are investi-
gated, namely the knapsack capacity and pro�t-weight correlation.
Our insights can be useful not only to design landscape-aware local
search heuristics, but also to better understand what makes the
TTP challenging for speci�c heuristics.
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1 MOTIVATION
In combinatorial optimisation, a �tness landscape of a given prob-
lem can be de�ned as a graph where nodes represent solutions, and
edges represent the existance of a neighbourhood relation given a
move operator [27]. However, there are two main issues with this
representation. Firstly, de�ning the neighbourhood matrix for the
entire set of possible solutions can be a very expensive task even for
small instances. Secondly, it is hard to extract useful information
about the search landscape given the �tness landscape graph.

Ochoa et al. [17] proposed a simpli�ed landscape representa-
tion called Local Optima Networks (LONs). In this representation,
the �tness landscape is represented as a graph whose nodes are
associated with local optima (or basins of attraction) and edges
indicate connectivities between the local optima. Two basins of
attraction are connected if at least one solution within a basin has a
neighbour solution within the other given a de�ned move operator.
LONs provide a very useful representation of the search space of
combinatorial problems, which can be exploited mainly by using
measures and indices from the graph theory. LON characteristics
have also been found to correlate with the performance of heuristic
search algorithms [12].

In this paper, we use this representation to study the Travel-
ling Thief Problem (TTP), a combinatorial optimisation problem
that was originally introduced by Bonyadi et al. [2] and reformu-
lated by Polyakovskiy et al. [19]. The TTP was designed to re�ect
some important aspects found in real-world optimisation problems
such as the composite structure and the existence of interdepen-
dencies. The problem received considerable attention particularly
from the evolutionary computation community. Designing e�cient
heuristic solvers is the focus of most of works on TTP [16, 25, 30],
only few studies have been conducted to understand the problem
complexity [20, 26, 29].

Wu et al. [29] investigated how the renting rate parameter im-
pacts the di�culty of TTP instances, and proposed intervals (lower
and upper bounds) to increase the instances’ hardness. The authors
exploited the obtained results to implement an instance generator
able to create hard-to-solve instances for simple evolutionary algo-
rithms. Note that two other problem parameters that also impact
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the problem di�culty are the number of cities and the number of
items per city. In this paper, we study two non-trivial problem prop-
erties, namely the knapsack capacity and the correlation between
the weights and the pro�ts of the items.

Our main goal is to understand the search space structure of
the TTP using basic local search heuristics, and to distinguish the
most impactful non-trivial problem features. Thus, we study the
knapsack capacity and the pro�t-weight correlation. In this work,
we (i) propose a problem classi�cation based on these two features,
(ii) create a large set of enumerable TTP instances according to
the features, (iii) generate a LON for each instance using two hill
climbing variants, (iv) explore/exploit, using speci�c measures,
the obtained LONs to gain some insights into their structure and
characteristics1.

The problem di�culty can be recognised using LON topological
properties or information about the basins of attraction. Our analy-
sis on such information corroborates the general idea that, using
basic local search techniques there is a direct correlation between
lower knapsack capacity and higher problem di�culty. In addi-
tion, other LON examinations revealed some real-world networks’
characteristics such as cliqueness and sparse interconnectivity. We
believe that these insights might contribute to the design of e�cient
local search-based heuristics for the TTP, and to understanding the
search space structure of complex problems with interdependent
components in general.

In the next section, we present the mathematical formulation of
the problem and brie�y review the �tness landscape topic including
some state-of-the-art works. In Section 3, we describe the basic
local search framework that will be used in our study. In Section
4, we propose a problem classi�cation and brie�y introduce the
instance generator we used. The results are reported and analysed
in Section 5. Finally, Section 6 concludes the paper.

2 BACKGROUND AND RELATEDWORKS
2.1 The Travelling Thief Problem
The Travelling Thief Problem is a combinatorial optimisation prob-
lem that aims to provide testbeds for solving problems with multiple
interdependent components [2, 19]. The TTP combines two well-
known problems, namely, the Travelling Salesman Problem and
the Knapsack Problem.

The problem is de�ned as follows: we are given a set of n cities,
the associated matrix of distances di j , and a set of m items dis-
tributed among these cities. Each item k is de�ned by a pro�t
pk and a weight wk . A thief must visit all the cities exactly once,
stealing some items on the road, and return to the starting city.

The knapsack has a capacity limit ofW , i.e. the total weight of
the collected items must not exceedW . In addition, we consider a
renting rate R that the thief must pay at the end of the travel, and
the maximum and minimum velocities denoted vmax and vmin
respectively. Furthermore, each item is available in only one city,
and Ai ∈ {1, . . . ,n} denotes the availability vector. Ai contains the
reference to the city that contains the item i .

A TTP solution is coded in two parts: the tour X = (x1, . . . ,xn ),
a vector containing the ordered list of cities, and the picking plan

1Our codes are publicly available at https://bitbucket.org/elkrari/ttp-�a

Z = (z1, . . . , zm ), a binary vector representing the states of items
(1 for packed, and 0 for unpacked).

To make the sub-problems mutually dependent, the TTP was
designed such as the speed of the thief changes according to the
knapsack weight. To achieve this, the thief’s velocity at city c is
de�ned in Equation 1.

vx = vmax −C ×wx (1)

where C = vmax−vmin
W is a constant value, and wx the weight of

the knapsack at city x .
We note д(z) the total items value (de�ned in Equation 2), and

we note f (x , z) the total travel time (de�ned in Equation 3).

д(Z ) =
∑
m

pm × zm S.T.
∑
m

wm × zm ≤W (2)

f (X ,Z ) =
n−1∑
i=1

txi ,xi+1 + txn,x1 (3)

where txi ,xi+1 =
dxi ,xi+1
vxi

is the travel time from xi to xi+1.
The objective is to maximize the total travel gain function, as

de�ned in Equation 4, by �nding the best tour and picking plan.

F (X ,Z ) = д(Z ) − R × f (X ,Z ) (4)

2.2 Fitness landscape analysis
Fitness landscapes illustrate the association between search and �t-
ness space, often depicted as rugged surfaces with many local peaks
of di�erent heights �anked by valleys of di�erent depths [13, 14].
Given a speci�c landscape structure, de�ned as the triple (S, F ,N )
where S is the search space, F the objective function, and N the
neighbourhood operator [27], a heuristic can be seen as a strategy
for navigating this structure in the search for the highest peak
or near-optimal solutions [22]. Fitness landscape analysis (FLA)
has been applied to investigate the dynamics of evolutionary algo-
rithms and single-solution heuristics for optimisation and design
problems [24]. In addition, FLA can help predict the performance of
those heuristics by using the search cost models for instance [22].

Landscape models have been used to make speci�c predictions
regarding the behaviour of local search techniques, evolutionary
algorithms, and other metaheuristics [28]. The behaviour is gener-
ally illustrated by the cost required to locate a solution with a given
quality threshold given a problem instance. These models can also
identify which features of the �tness landscape are responsible for
the problem di�culty during the search process [27].

In order to understand the structural organisation of the local
optima in combinatorial landscapes, Ochoa et al. [17] proposed the
Local Optima Networks (LONs) as a simpli�ed �tness landscape
model. There, the �tness landscape is represented as a graph of
connected local optima.

A local search heuristic A de�nes a mapping from the solution
space S to the set of locally optimal solutions S∗. A solution i in
the solution space S is a local maximum given a neighbourhood
operator N if F (i) ≥ F (s),∀s ∈ N (i). Each local optimum has an
associated basin of attraction. In general, the basin of attraction of
a local optima i is the set composed of all the solutions that, after
applying a local search procedure starting from each of them, the
procedure returns i . Thereby, the basin of attraction associated to

https://bitbucket.org/elkrari/ttp-fla
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a local optimum i is the set Bi = {s ∈ S |A(s) = i}. The size of
the basin of attraction of i is the cardinality of Bi . Given a neigh-
bourhood operator, a connection between two attraction basins is
created if at least one solution in one basin has a neighbour solution
in the other basin.

Figure 1 represents a simpli�ed illustration of the attraction
basins (black circles), their local optima (red big dots), the solutions
that converge to the local optima when applying the local search
(black small dots), and the connections between the local optima
(blue lines). Note that the �gure is kept simple for visualisation pur-
poses, and more sophisticated heuristics with explorative operators
are expected to result in many more interconnections between the
attraction basins.

Figure 1: A simpli�ed illustration of the attraction basins
and the connectivity in local optima networks.

Local optima network properties for permutation-based prob-
lems have been studied in [5]. Furthermore, some works anal-
ysed the correlation between LON features and the performance of
search heuristics [3, 18, 23].

In this paper two hill climbing local search procedures are inves-
tigated and the corresponding LONs are explored with the aim of
understanding the di�culty of TTP instances. The LON model is
adapted for the TTP. This way, we can understand the impact of
some problem features by studying the topological structure of the
generated LONs. The model is extended with additional measures
that assess the connectivity in LONs, and statistical tests are used to
explore the scale-freeness of the obtained LONs. Additionally, the
attraction basins are also studied as they give additional insights
into the di�culty of problem instances.

3 LOCAL SEARCH HEURISTICS
In this section, we present a basic local search framework for the
TTP. The framework is a deterministic hill climber, designed with
the only goal of investigating the structure of the problem search
space. The pseudocode is described in Algorithm 1, and it can have
multiple implementations depending on the chosen neighbourhood
operators. Note that NTSP (.) and NKP (.) represent the neighbour-
hood functions for the TSP component and the KP components
respectively.

Algorithm 1 A basic local search heuristic framework for the TTP
1: s ← initial solution
2: while there is an improvement do
3: for each s∗NTSP (s) do
4: for each s∗∗NKP (s∗) do
5: if F (s∗∗) > F (s) then
6: s ← s∗∗
7: end if
8: end for
9: end for

10: end while

Although most state-of-the-art heuristics proposed for the TTP
have a two-stage structure2 [9, 16, 30], the use of an embedded
neighbourhood structure is crucial for this study. In fact, two-stage
heuristics divide the TTP solution into two components at each
iteration and generate a large number of landscapes (one landscape
for each sub-problem at each heuristic iteration) — this makes it
virtually impossible to investigate the local optima structure of
the overall problem. On the other hand, a joint-neighbourhood
structure generates a problem speci�c neighbourhood function and
preserves homogeneity of the TTP solutions. This helps the heuris-
tic to easily and e�ciently depict the structure and connectivity of
local optima. This local search framework was explored by [8] and
showed a competitive performance for small TTP instances com-
pared with other basic stochastic heuristics. However, the approach
shows some drawbacks, notably with scalability and exploration
abilities.

In the context of this study, we consider two local search variants
based on Algorithm 1. The �rst (named J2B) uses the 2-OPT neigh-
bourhood as theNTSP (.) neighbourhood, while the second (named
JIB) uses the insertion operator. In both variants, the one-bit-�ip
operator is used to construct the NKP (.) neighbourhood.

4 EXPERIMENTAL SETTING
4.1 TTP classi�cation and parameters
The TTP instances can be classi�ed according to the following
properties.

• Number of cities (n): The only parameter belonging to the
TSP component in the TTP de�nition. The TTP benchmark
library [19] gets its TSP component from the TSPLIB database
which was introduced in [21].
• Item Factor (F): Represents the number of items per city. Each

city, except the �rst one, has the same number of items. The
total number of items ism = (n − 1) × F.

• Pro�t-value correlation (T): De�nes the correlation among
the weight (wi ) and pro�t (pi ) of each item. Three correlations
have been de�ned in the TTP library, namely, uncorrelated (unc),
uncorrelated with similar weight (usw), and bounded strongly
correlated (bsc).

• Knapsack capacity class (C): Ranges between 2 and 10. C
is a factor occurring in the maximum weight of the knapsack
which is given in Equation 5.

W =
C
11

n∑
x=2

F∑
y=1

wxy (5)

The term C/11 is used to limitW , i.e., class C = 10 enlargesW
around to 90%, allowing more objects in the knapsack [19].

Since we are interested in studying the impact of non-trivial
features on the structure of the �tness landscape, we classify the
problem instances based on the features T and C.

2This family of heuristics solve the problems by tackling each sub-problem individually
using a heuristic search. The process is then iterated multiple times depending on the
stopping criteria.
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4.2 Instance Generation
The number of all possible solutions for a TTP instance is at most
(n − 1)! × 2m , which makes the enumeration and study of the
standard instances impractical. Thus, an instance generator has
been specially implemented to produce enumerable instances. In
order to generate the local optima networks and identify the basins
of attractions, we use small instances with 7 cities and 6 items (one
per city, except for the starting one).

The generator has been designed following the directives in [20].
The authors computed the renting rate R (i.e., Equation 6) by using
existing solvers to get the best picking plan for the KP3 component
and the near-optimal tour for the TSP.4 As we are using small
instances in this study, our generator obtains the renting rate for
each instance by applying an exhaustive search to �nd the optimal
solution for each component.

R =
д(Zopt )

f (Xopt ,Zopt )
(6)

where Zopt and Xopt represent the optimal picking plan and the
optimal tour respectively

The TSP component is �xed, i.e., the set of coordinates is the
same for all the generated instances. As we are interested in two
problem features, namely the knapsack capacity and pro�t-weight
correlation, the capacity class is varied between C = 2 and C = 10,
and all three correlation variants are considered.

Note that, for very small TTP instances, the �rst capacity class
(C = 1) can not be used with the uncorrelated with similar weights
instances where the knapsack weights are ranged in [103, 103 + 10].
Indeed, following Equation 5, for n = 7 and F = 1, the minimal
value ofW is 7

11 × 103 which is smaller than the value of any items.
Therefore, 27 classes of the TTP are considered. For each class,

100 samples are generated with the aim of analysing their �tness
landscapes.

5 RESULTS AND ANALYSIS
In this section, we analyse the local optima networks obtained using
local search heuristics for the Travelling Thief Problem to achieve
some insights about the structure of the search space. Furthermore,
we study the basins of attraction and their relationship with some
LON properties looking for additional information about the search
di�culty.

5.1 Topological properties of local optima
networks

Tables 1 and 2 report the average values for various network proper-
ties measured on TTP instances for the two local search heuristics.
These properties are often used for LON analyses Ochoa et al. [17].
Values are averaged over 100 randomly generated instances, and
subscript numbers represent the standard deviation. Each instance
is represented by its corresponding LON.

The graph metrics are explained as follows. nv and ne represent
the mean number of vertices (or nodes) and the mean number
of edges over all the generated LONs respectively. z is the mean
of the average degrees. C is the mean of the average clustering
3As available at http://www.diku.dk/ pisinger/codes.html
4Accessible at http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm

coe�cients. Cr is the mean of the average clustering coe�cients
of corresponding random graphs (i.e. random graphs with the
same number of vertices and mean degree). l is the mean of the
average shortest path lengths between any two local optima. π is
the connectivity rate, which represents the probability over the 100
samples that the LON is a connected graph. Finally, S is the mean
number of non-connected components (sub-graphs).

A �rst insight into the search di�culty can be drawn from the
values of nv and ne . We can clearly see that the number of vertices
and the number of edges generally decrease when the knapsack
capacities increase for both local search variants. This implies
that the hardness of search decreases when the knapsack capacity
increases. Intuitively, this makes sense, as instances with very large
knapsack capacities are less constrained than those with medium
and particularly small capacities.

The mean average degree z increases with the capacity class,
and it decreases when the capacity class reaches 6 (7 in one case
for JIB, T = usw).

We can also observe some so-called small-world properties by
looking at the clustering coe�cients (C , Cr ) and the mean path
lengths (l ). Firstly, the LONs show a signi�cantly higher degree of
local clustering compared with their corresponding random graphs.
This means that the local optima are connected in two ways: dense
local clusters and sparse interconnections, which can be di�cult
to �nd and exploit. Secondly, all the LONs have a small mean path
length, i.e. any pair of local optima can be connected by traversing
only few other local optima. A microscopic view on the values
of the mean path length shows that it is proportional to loд(nv ).
Therefore, a more sophisticated local search-based metaheuristics
with exploration abilities, such as Tabu Search [10, 11], could move
from a local optima to another within only a few iterations.

Interestingly, the connectivity rate shows that all the LONs gen-
erated using J2B are connected; while some of the LONs generated
using JIB are disconnected graphs with a signi�cantly high number
of non-connected components, which is a notable disadvantage.
This may not be surprising as the 2-opt and bit-�ip operators, used
in J2B, both induce a fully connected landscape, when considered
separately for the KP and the TSP [27].

5.2 Degree Distributions
Figure 2 shows the cumulative degree distribution for some repre-
sentative classes of the TTP for J2B and JIB in a log-log scale. The
cumulative degree distribution function represents the probability
P(k) that a randomly chosen node has a degree larger than or equal
to k . Though the �gures show �uctuations, they allow us to de-
duce some interesting real-world network properties. We can see
that the degree distributions decay slowly for small degrees, while
their dropping rate is signi�cantly faster for high degrees. This
behaviour indicates that the majority of local optima have a small
number of connections, while a few have a signi�cantly higher
number of connections.

Most of the real-world networks have their topological structure
more accurately described by a power-law or a scale-free degree
distribution P(k) = k−α , where α ∈ [2, 3] is a scaling parameter.
The behaviour of local search strategies on networks has been
studied according to the degree distribution [1]. Intuitively, the
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Table 1: General LON and basins’ statistics for the J2B heuristic.

T C nv ne z Cr C l π S

unc
2 412.57430.67 6820.466059.62 35.5710.78 0.250.25 0.640.14 1.830.33 10 10
3 385.29405.53 8878.229778.08 41.1517.19 0.250.25 0.70.14 1.470.29 10 10
4 269.09316.48 8816.1111170.62 47.5522.84 0.430.31 0.770.12 1.570.32 10 10
5 144.3205.49 4808.718776.75 45.8523.36 0.590.27 0.820.1 1.40.27 10 10
6 98.69105.59 3435.645583.68 47.5426.02 0.680.22 0.860.08 1.310.22 10 10
7 73.39122.2 2300.696553.74 39.9521.72 0.780.2 0.890.08 1.210.2 10 10
8 36.7529.71 745.251041.48 28.5416.86 0.880.13 0.930.05 1.110.13 10 10
9 37.8133.38 827.41621.9 28.9518.61 0.880.13 0.930.05 1.110.13 10 10
10 29.8427.64 537.29979.27 23.4214.9 0.910.12 0.940.05 1.080.12 10 10

usw
2 1664.24598.47 21720.487192.31 26.441.06 0.010 0.50.02 2.320.04 10 10
3 3041.01583.12 37929.457130.12 24.960.12 00 0.540.02 2.340.01 10 10
4 1482.31295.18 60411.8237942.75 100.5525.33 0.190.2 0.630.08 1.880.28 10 10
5 2564.181216.57 85908.5728969.87 72.5812.66 0.040.03 0.590.04 2.110.11 10 10
6 392.98358.23 30770.6331941.48 125.6649.46 0.460.17 0.750.08 1.530.18 10 10
7 724.31517.63 54555.5936874.79 150.1511.71 0.310.17 0.690.05 1.680.18 10 10
8 126.4138.3 5472.073486.59 80.4323.21 0.650.08 0.820.04 1.340.08 10 10
9 137.1477.98 7707.846948.17 94.3133.58 0.760.12 0.860.05 1.230.12 10 10
10 129.5417 57391303.12 87.2910.69 0.680.02 0.830 1.310.02 10 10

bsc
2 675.06617.18 12372.519253.91 41.6118.27 0.180.21 0.580.15 1.930.32 10 10
3 674.4596.53 19009.7215837.79 58.8217.54 0.210.2 0.630.11 1.850.28 10 10
4 751.391068.2 27887.1632217.37 77.9322.55 0.310.25 0.680.13 1.720.31 10 10
5 461.03705.52 20919.8329958.57 77.6127.9 0.460.3 0.760.13 1.540.32 10 10
6 240.02440.31 12698.7326078.34 83.9229.49 0.590.23 0.80.09 1.410.23 10 10
7 158.74144.52 8268.6311296.75 83.2131.8 0.650.18 0.830.07 1.340.18 10 10
8 117.99112.51 5651.669206.02 73.8228.99 0.750.15 0.870.06 1.240.15 10 10
9 73.8443.2 2566.153007.44 57.5422.32 0.840.1 0.90.04 1.150.1 10 10
10 59.4531.52 1766.421773.52 49.1120.44 0.870.08 0.920.04 1.120.14 10 10

Table 2: General LON and basins’ statistics for the JIB heuristic.

T C nv ne z Cr C l π S

unc
2 387.14365.26 9183.3813001.81 39.0925.26 0.270.28 0.550.26 1.440.91 0.90.28 35.85131.14
3 376.01446.51 12933.2222815.43 42.6933.54 0.360.32 0.660.22 2.920.82 0.930.25 6.4725.46
4 320.67492.12 12570.3426488.7 52.2633.63 0.390.28 0.730.13 1.470.68 0.950.19 1.181.24
5 233.42243.77 9516.9414458.59 57.7833.89 0.390.23 0.730.14 1.470.58 0.960.19 1.372.5
6 194.99174.73 7490.6210059.34 55.4830.93 0.450.26 0.780.09 1.480.44 0.980.14 1.393.8
7 126.03135.36 4494.367313.9 49.726.9 0.570.23 0.820.08 1.420.24 10 10
8 74.7153.4 2042.52535.87 41.2421.61 0.640.19 0.840.07 1.30.38 0.980.14 1.090.8
9 52.6634.52 1133.331288.86 34.0915.65 0.750.17 0.870.08 1.250.18 10 10
10 35.8924.86 601.03754.05 26.2711.84 0.840.15 0.920.06 1.150.15 10 10

usw
2 1323.35583.24 49482.8627283.31 68.4729.66 0.050.02 0.230.11 1.770.98 0.880.32 62.65171.6
3 565.16352.61 20563.0417739.61 58.8634.2 0.110.07 0.360.17 1.371.12 0.820.38 45.4795.42
4 1347.421343.72 73476.1169681 99.2144.97 0.160.13 0.590.11 1.50.99 0.870.33 1.541.78
5 966.261025.38 67640.372485.31 116.7349.69 0.360.29 0.660.16 1.510.78 10 10
6 477.38379.32 31049.0137190.96 100.7346.12 0.240.06 0.720.06 1.760.07 10 10
7 603.95493.46 53514.3243997.71 142.0965.47 0.40.24 0.710.12 1.570.35 0.990.1 1.060.6
8 154.0533.9 5261.682411.25 66.214.5 0.440.07 0.780.02 1.550.07 10 10
9 133.1682.67 6758.76925.32 76.7242.27 0.570.12 0.820.05 1.370.36 0.980.14 1.020.14
10 93.1910.58 2590.2773.89 54.3612.14 0.580.08 0.790.02 1.410.08 10 10

bsc
2 460.48545.19 15032.9918235.33 53.7629.55 0.270.23 0.590.19 1.770.3 0.960.17 1.474.15
3 586.22676.15 26870.4734510.12 67.9440.08 0.310.26 0.620.19 1.550.65 0.940.22 7.2741.69
4 580.64790.3 32339.1842829.18 86.1545.67 0.340.24 0.660.15 1.470.72 0.930.25 2.8511.65
5 716.18927.8 41679.4755873.16 89.5240.42 0.370.26 0.70.14 1.610.38 0.990.1 1.020.2
6 399.69566.03 26041.5542342.31 89.8746.88 0.480.26 0.760.11 1.490.36 0.990.1 1.050.5
7 255.56298.19 14855.0521399.29 86.0440.42 0.530.21 0.790.08 1.460.21 10 10
8 160.66170.85 8491.1913020.19 74.0238.45 0.650.22 0.830.08 1.320.32 0.990.1 1.010.1
9 100.0670.22 3925.344614.94 62.2526.43 0.720.16 0.860.06 1.270.16 10 10
10 77.7642.95 2547.982400.65 55.121.02 0.770.13 0.870.06 1.220.21 10 10
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Figure 2: Cumulative degree distribution of J2B (top) and JIB (bottom) for T = unc, C = 5 (left), T = usw , C = 5 (middle), and
T = bsc, C = 5 (right). All curves are shown in a log-log scale.

Table 3: The rates at which the Kolmogorov-Smirnov test
fails to reject power-law and exponential as plausible distri-
bution models, with a signi�cance level of 0.1

T=unc, C=5 T=usw, C=5 T=bsc, C=5

Power-law J2B 0.22 1 0.53
JIB 0.39 0.26 0.46

Exponential J2B 1 1 1
JIB 1 1 1

degree distribution allows one to search a power-law graph more
rapidly, relying on the fact that the number of edges per node varies
considerably from node to node, i.e., its edges do not let us uniformly
sample the graph, but they preferentially lead to high degree nodes.
This again supports our conjecture about the existence of few nodes
with high degree that e�ciently connect the entire landscape. A
local search algorithm has more chances to move to one of these
high degree nodes than to other random nodes, which allows the
algorithm to e�ciently browse the entire graph.

With the aim of performing a rigorous study on the cumulative
degree distributions, we use the Kolmogorov-Smirnov test to inves-
tigate the adequacy of power-law [4] and exponential models [6].
The test is performed on all 100 samples for each TTP class shown
in Figure 2, and the rates at which the test fails to reject the null
hypothesis (that the data come from the considered distribution
model) are shown in Table 3.

Although J2B was able to produce LONs with degree distribu-
tions that �t a power-law distribution for many instances, a power-
law can not be generalised as a plausible model to describe the
degree distribution for all the landscape.

Given this fact, another possibility is to look into �tting the de-
gree distribution to an exponential model of the form P(k) = e−k/z

z .
This model was proposed by [17] to describe the degree distribu-
tions for NK models, with tunable problem di�culties. Looking
at Figure 2, especially the curves produced by JIB, an exponen-
tial model seems to be a good alternative. Table 3 shows that the
Kolmogorov-Smirnov always fails to reject the exponential distri-
bution as a plausible model for all the samples considered.

5.3 Basins of attraction

capacity class
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Figure 3: Average of the relative size of the basin correspond-
ing to the global maximum for each C over the 100 TTP in-
stances for J2B (left) and JIB (right).

Exponential degree distributions do not provide a straightfor-
ward interpretation of the local search strategies’ behaviour as
power-law does. Therefore, an alternative approach to analyse the
di�culty of the search space for the considered heuristics is to look
into the size of the basins of attraction. In Figure 3 we illustrate the
mean sizes of global optimum basins over all the instances for all
the capacity classes. The plots show that the basin size generally
increases when the capacity class increases.

This correlation is more thoroughly examined and generalized
to the mean size of all basins of attraction for some representative
instances as shown in Figure 4. We can clearly see a correlation
between the degrees and the basin sizes.

Next, we take a look into the relationship between the �tness of
local optima and their basin size. Figure 5 illustrates this relation-
ship for representative instances for the two heuristics.

For J2B, there is a clear positive correlation between the �tness
of local optima and their basin size as the size of the basin increases
when the �tness value increases. The fact that the solutions having
the highest �tnesses belong to large basins makes them more likely
to be found using the addressed local search techniques. Further-
more, we can also observe that the number of good quality local
optima is smaller compared to low quality local optima.

On the other hand, it is di�cult to extract a pattern for JIB due
to the high amount of volatility at which the �tnesses are scattered
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(a) J2B for T = unc and C = 5.
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(b) J2B for T = usw and C = 5.
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(c) J2B for T = bsc and C = 5.
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(d) JIB for T = unc and C = 5.
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(e) JIB for T = usw and C = 5.
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(f) JIB for T = bsc and C = 5.

Figure 4: Correlation between the degree of local optima and their corresponding basin sizes on representative examples.
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(f) JIB for T = bsc and C = 5.

Figure 5: Correlation between the �tness of local optima and their corresponding basin sizes on representative examples.

relatively to the basin sizes. Therefore, it is safe to assume that the
probability that JIB will identify a global optimum is quite low.

At �rst sight, it is not clear how this information can be used in
a heuristic. However, if techniques like self-adaptation and restarts
are used in combination with J2B, then the progress achieved over
time can be used in online control as an indicator for the expected
achievable solution quality.

Also, if the same local optimum is found over and over again
from random starting points, we conjecture that such restarts are
not necessary for J2B, whereas exploring these observations is quite
di�cult in the case of JIB.

From a comparison point of view, J2B seems to be a better local
search approach compared to JIB. In a sense, this is not surprising
as most well performing heuristics for the TTP, including memetic
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algorithms, apply the 2-OPT and bit-�ip operators in their algo-
rithms mainly to improve their exploitation ability [7, 16, 25]. Note
that we are not dismissing the insertion operator. In fact, the inser-
tion move has been commonly adopted as a disruptive operator in
state-of-the-art TSP solvers [15].

6 CONCLUSION
In this paper, the structure of the Local Optima Networks (LONs)
and the basins of attraction in the Travelling Thief Problem (TTP)
were investigated. Two problem features were studied, namely,
the knapsack capacity, and the correlation between weights and
item pro�ts, in order to quantify their impact on the problem dif-
�culty. We proposed a problem classi�cation based on these two
features and examined enumerable TTP instances using two basic
local search heuristics: J2B, which combines the 2-OPT and bit-�ip
operators, and JIB, which combines the insertion and bit-�ip opera-
tors. For each instance, the corresponding LON was built aiming
to extract some useful network measures.

Based on the reported results, we concluded that instances with
high knapsack capacities might be easier to solve. The results also
showed that the investigated LONs have two small-world proper-
ties: strong local clustering and a small mean path length. These
properties suggest the existence of dense local connections between
some local optima, and that almost any two local optima are con-
nected with few local search iterations. Furthermore, some LONs
built using JIB encompass disconnected sub-graphs, while the LONs
generated using J2B are always connected, which in turn may make
the instances easier to solve for J2B.

In addition to the LON topological properties, the cumulative de-
gree distribution was analysed for a representative set of instances.
The Kolmogorov-Smirnov test was used to investigate the adequacy
of a power-law and an exponential model. The test showed that,
di�erently from the exponential model, the power-law can not be
generalised for all the studied LONs. However, many LONs showed
a scale-free behaviour as the Kolmogorov-Smirnov test failed to
reject the power-law as a plausible distribution.

The study of attraction basins con�rmed that the di�culty of
instances drops signi�cantly when the knapsack capacity increases.
Finally, the investigation of the relationship between the �tness of
local optima and their basin size shows that J2B has better chances
to identify the global optima compared to JIB.
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