
In-vivo and offline optimisation of energy use in the presence of
small energy signals – A case study on a popular Android library

Mahmoud A. Bokhari
Optimisation and Logistics, School of
Computer Science, The University of

Adelaide, Australia
Computer Science Department,

Taibah University, Kingdom of Saudi
Arabia

mahmoud.bokhari@adelaide.edu.au

Brad Alexander
Optimisation and Logistics, School of
Computer Science, The University of

Adelaide, Australia
bradley.alexander@adelaide.edu.au

Markus Wagner
Optimisation and Logistics, School of
Computer Science, The University of

Adelaide, Australia
markus.wagner@adelaide.edu.au

ABSTRACT
Energy demands of applications on mobile platforms are increasing.
As a result, there has been a growing interest in optimising their
energy efficiency. As mobile platforms are fast-changing, diverse
and complex, the optimisation of energy use is a non-trivial task.

To date, most energy optimisation methods either use models or
external meters to estimate energy use. Unfortunately, it becomes
hard to build widely applicable energy models, and external meters
are neither cheap nor easy to set up. To address this issue, we
run application variants in-vivo on the phone and use a precise
internal battery monitor to measure energy use. We describe a
methodology for optimising a target application in-vivo and with
application-specific models derived from the device’s own internal
meter based on jiffies and lines of code. We demonstrate that this
process produces a significant improvement in energy efficiency
with limited loss of accuracy.

CCS CONCEPTS
• Computing methodologies → Genetic programming; • Hard-
ware → Batteries; • Software and its engineering → Search-
based software engineering;

KEYWORDS
Non-functional properties, energy consumption, mobile applica-
tions, Android, multi-objective optimisation
ACM Reference Format:
Mahmoud A. Bokhari, Brad Alexander, and Markus Wagner. 2018. In-vivo
and offline optimisation of energy use in the presence of small energy
signals – A case study on a popular Android library. In EAI International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and
Services (MobiQuitous ’18), November 5–7, 2018, New York, NY, USA. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3286978.3287014

1 INTRODUCTION
Energy demands on mobile platforms are increasing as users spend
more time on their devices [37] and their applications become

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
MobiQuitous ’18, November 5–7, 2018, New York, NY, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6093-7/18/11.
https://doi.org/10.1145/3286978.3287014

more powerful. In response, hardware manufacturers have given a
very high priority to improving battery capacity [38] and operating
system vendors have started to ration energy-hungry resources [19].
Unfortunately, it is still the case that mobile application vendors can
produce applications that use too much energy [27]. A cause of this
problem is a lack of developers’ skills in optimising applications for
energy [30]. Search-based software engineering (SBSE) can help
address this problem through automated search for energy-efficient
variants of mobile software [3, 26].

Current work in automated optimisation of energy use has em-
ployed models derived from external meters to drive search [5, 7,
9, 26, 34]. However, as operating system behaviour becomes more
complex and platforms become more diverse, such models are be-
coming less generally applicable [13]. An alternative approach to
energy evaluation is to test application variants for energy use
in-vivo, i.e., on the device itself [3] using the device’s internal meter.

Contributions. In this work we use measurements from the de-
vice’s own internal meter that, for the first time:

(1) build energy models that are subsequently used for success-
ful optimisation of energy use of a CPU-bound application
and, alternatively,

(2) successfully guide the same optimisation task using direct
sampling of the internal meter during optimisation.

By using the internal meter of the phone we make progress
toward optimisation processes customised to each platform and its
current software environment. As hardware platforms and software
configurations become more complex and diverse we envisage the
ability to create custommodels in this way will become increasingly
important.

We also demonstrate that it is possible to overcome the relatively
low accuracy and resolution of the internal meter through:

(1) simple rewrites to the code of the source application to am-
plify the signal the code produces whilst running in its test
harness, and

(2) by performing an initial in-vivo sensitivity analysis to iden-
tify the most promising targets for optimisation within the
application code.

Through these measures we demonstrate that it is possible to signif-
icantly reduce the energy use of Rebound: a short-running physics
library, for animating GUI interfaces that is installed on over 1
billion devices worldwide.

https://doi.org/10.1145/3286978.3287014
https://doi.org/10.1145/3286978.3287014


MobiQuitous ’18, November 5–7, 2018, New York, NY, USA M. Bokhari et al.

The rest of the paper is structured as follows. After putting
our work into the context of existing work in the next section,
we present our experimental methodology and describe our pre-
liminary experiments in Section 3. Section 4 describes the energy
optimisation experiments, their results and their validation. Finally,
we present our conclusions in Section 5.

2 RELATEDWORK
Related work can be divided into work that builds energy models
for CPUs on mobile devices and work that performs automatic
energy optimisation on code.

In terms of CPU energy models, many works have used an exter-
nal meter to help derive energy models [11, 17, 22, 31]. Such meters,
while accurate, are increasingly difficult and expensive to set up,
among other, because batteries are often non-removable nowadays
and because batteries and devices communicate – this is difficult to
mimic if all one has is an external power meter that cannot cover
the communication protocols of various battery manufacturers.1
In contrast, this work uses the easy-to-access internal meter (a
specialised battery fuel gauge chip with various compensations)
for both model-building and in-vivo optimisation. Loosely related
here are specialised profilers such as Trepn [20] for Qualcomm pro-
cessors have their place, however, it is not trivial to integrate their
results into the model-building process for arbitrary code involving
entire smartphones. In contrast to these approaches, we use the
battery’s internal meter to obtain the energy readings for the model-
ing building. This Maxim MAX17050 fuel gauge chip compensates
measurements for temperature, battery age and load [21] and it
is an adequate substitute of an external meter if the measurement
periods are sufficiently long [4].

In addition, the code instrumentation procedure used for mod-
elling in this paper is simpler and less labour intensive than the
techniques in [15, 16, 25]. For example, the vlens tool [25] calculates
energy use of apps at source line level using an external meter
readings combined with program analysis and statistical modelling.
Another example is the elens tool [16], which is a technique based
on program analysis and the Software Energy Environment Pro-
filer (SEEP) that estimates energy usage of Android APIs. SEEP is a
labour intensive and infeasible to maintain, as there are thousands
of APIs in Android SDK, and they evolve rapidly at rate of 115 API
updates per month [29]. In addition, the work in [11, 35] measures
the energy use of instructions at microprocessor level. Their results
show that the variation in energy use between different instruc-
tions is relatively small. We make this one of our assumptions, but
validate the trade-off configurations in the end on the device never-
theless. Our approach is similar to the work of [13, 41], which uses
a battery monitor unit to measure energy usage and correlates it
with CPU utilisation. Our work also extends the modelling process
to the relationship between energy and lines of code (LOC).

There are several studies that use SBSE to improve the energy
efficiency of software on desktop platforms [7, 9, 34]. All of that
work builds the models from external meter readings and uses a
single-objective technique. In contrast to this, our research targets

1In our preliminary testing with external meters, our modern devices would either
not start or they would shut down abruptly when we would leave the battery commu-
nication pin(s) unconnected.

mobile devices, which have been shown to be a hostile environment
for such experiments [3].

In terms of portable devices, [8] applied a multi-objective op-
timisation technique trading off energy consumption (measured
externally) on a raspberry pi, and [27] utilised an optimisation ap-
proach to trade off energy use of an OLED screen (model-based)
against a measure of user-experience. We utilise both generated
models and live battery readings to discover energy-accuracy trade-
offs both in-vivo and off-line.

3 METHODOLOGY
This section outlines the setup of the experiments described in this
work. In the following we describe, in turn: the target application
that we use to demonstrate our approach; the evolutionary search
framework used; the fitness function; the methodology for defining
the search space; and the initialisation process for the search.

3.1 Target Application
In this section, we first list the requirements that target applications
must satisfy for a subsequent optimisation. Then, we introduce our
chosen application, characterise its test cases and define how we
measure the impact of optimisation on the application’s behaviour.

To be considered a target for optimisation, we require open-
source applications to satisfy the following requirements: (R1)
widely used, for maximum impact; (R2) computationally intensive,
for potential room for improvement; (R3) provide tests that allow
for gradual deviations from target outputs.

Interestingly, many open source applications do not satisfy the
last requirement, as tests tend to focus on functional property
checks such as data extraction from files, listening to events, user
interface tests, and so on.

Following a comprehensive search for applications that satisfy
all requirements, we use Rebound2 in this study. Rebound is a Java
library that models spring dynamics. The spring models in Rebound
can be used to create animations that feel natural by introducing real
world physics to applications. For example, in complex components
like pagers, toggles, and scrollers. Major apps that use Rebound
include Evernote, Slingshot, LinkedIn, and Facebook Home.

The focus of our optimisation is Rebound’s Spring class in the
com.facebook.rebound package. This class implements a classical
spring using Hooke’s law with configurable friction and tension.
Inside this class, the advance function is responsible for the physics
simulation based on SOLVER_TIMESTEP_SEC sized chunks. The com-
putations include, among others, Euler integrations and calculations
of derivatives. Interestingly, some level of performance optimisation
has already been performed, as evidenced by the source comment
“The math is inlined inside the loop since it made a huge perfor-
mance impact when there are several springs being advanced.”

Rebound comes with 44 test cases that vary significantly in na-
ture. Those that perform the actual physics calculations are most
important for us: these are (i) relatively time consuming and (ii)
deviations from the exact results may be acceptable if energy con-
sumption is decreased as a result of a configuration change.

2Rebound Spring Animations for Android: http://facebook.github.io/rebound/, ac-
cessed 10 May 2018.

http://facebook.github.io/rebound/


In-vivo and offline optimisation in the presence of small energy signals MobiQuitous ’18, November 5–7, 2018, New York, NY, USA

Interestingly, the original test cases do not result in a quality
of 0, but in a tiny non-zero value. This is due to tests not resulting
in exactly the spring speed and position values provided in the
test oracle. To address this, we adjust the test oracles based on the
actual output of the code on the device.

3.2 Evolutionary Framework
In our main experiments we use NSGA-III [12] to optimise two
objectives: energy use by Rebound and the deviation of the output
of the modified application from the original. We use this state-
of-the-art algorithm to explore the multi-objective configuration
spaces that result from our ways of measuring and predicting en-
ergy use. Individuals in the search space are variants of the Rebound
application. These variants are created during search using deep pa-
rameter optimisation (DPO) [6, 40]. DPO is a genetic improvement
technique [33] where variants are produced by mutating constants
(deep parameters) found within its source code, and which are typ-
ically not accessible to a user. These deep parameters are exposed
to the search process by automatically lifting them to be encoded
as explicit constants.

For Rebound, our framework exposes integer and double con-
stants within the source code. This starts by replacing those con-
stants with placeholders. The placeholders are calls to read each
placeholder’s value from a configuration file. In most genetic im-
provement research, modifications to the source-code require re-
compilation before evaluation. This can be costly – in our case,
recompilation carries a penalty of 20-30 seconds. Encoding individ-
uals as configuration files for the exposed parameters eliminates the
cost of recompiling Rebound variants. The configuration file is read
once per execution and thus incurs a fixed energy overhead though.
As the file size remains stable, we assume this read overhead to be
constant across any and all evaluations, and therefore it does not
effect the outcomes of the search process.

3.3 Fitness Functions
Two fitness functions are used in this work: the energy used by
an individual program variant and the accuracy of that program
variant.

3.3.1 Fitness: Energy. In our experiments, we compare three
alternative methods to measure fitness: in-vivo measurement; on-
phone measurement of CPU utilisation (Jiffies); and a Lines-of-code
(LOC) proxy for energy use running on a computer. In all cases the
proxies model CPU-usage.

In-Vivo Energy Measurement. One way to measure the energy
use of a program variant is to perform experiments on a working
platform – in-vivo – and sample an internal battery meter before
and after the trial run. In our experiments our target platform is
the HTC Nexus 9 running the Android 6 operating system. The
special feature of this device is that it is equipped with the Maxim
MAX17050 fuel gauge chip that compensates measurements for
temperature, battery age and load [21], which provides an adequate
substitute of an external meter if the measurement periods are
sufficiently long [4]. Android 6 is used in our testbed as its market
share of Android flavours was 32% and 25% for the second half of

(a) Energy estimation using jiffies at different CPU levels.

(b) Measured energy vs. estimated using LOC at CPU frequency of
1.4 GHz.

Figure 1: Actual energy use of Rebound as a function of
jiffies and LOC.

2017 and first half of 2018, respectively3. In the remainder of this
article, we will use nWh as the unit, as this is the battery gauge
chip’s provided resolution.

In our experiments we use a version of the methodology de-
scribed in [3] to load a set of program variants to the phone via
the Android Debugging Interface version 1.0.36 (ADB), and then
cycle through the variants, sampling the internal meter before and
after, and finally disconnecting ADB and charging the phone for the
next generation. The internal meter is accessed through Android’s
BatteryManager. This API broadcasts these values with a frequency
of 4Hz. The precision of this approach is significantly higher than
ADB’s own energy estimates [3], which are based on rough and
uncompensated system models.

In running the optimisation process a great deal of care is re-
quired to avoid systematic noise induced by dynamic CPU speeds,
effects of heat, non-linearity in battery response, overheads of mem-
ory logs, garbage collection, communication and UI devices, and
sleep modes. For the detailed description, we refer the interested
reader to [3].

Dealing with small energy signals. One problem specific to Re-
bound is test-harness overhead. As it is pointed out in [23], test
duration is inversely proportional to smallest detectable impact.
The easiest way to increase test duration is to repeat the whole
test case several times to increase the energy signal. However, the
test harness overhead for Rebound is bigger than the run-time of
the software being optimised – by a factor of four-to-one. One can

3Statista – the Portal for Statistics: https://www.statista.com/, accessed 8 October 2018.

https://www.statista.com/


MobiQuitous ’18, November 5–7, 2018, New York, NY, USA M. Bokhari et al.

alleviate the overall overhead by repeating only the core applica-
tion or function under test multiple times within each test case to
ensure the test run spends a greater percentage of time running the
program under mutation. Unfortunately, for Rebound this approach
is not effective because the overhead in running each test case, e.g.
state changes in the JVM caused by multiple runs and setting up
listeners, is still large compared to the target code. In these cases,
even with repetition, the code that is not subject to optimisation
dominates the code being optimised. In addition, in memory con-
strained environments such as smart-phones, the impact of just
re-running the tests fills up the application’s allocated heap portion,
which causes frequent Garbage Collector (GC) invocations to free
the allocated memory. This notably increases the test time as well
as it adds more noise to the collected energy signal [2, 18]. We
address this problem in our experiments by instrumenting the code
to be optimised with dummy loops after each line of code. This
simple approach serves to amplify the effect of any change to the
parameters of the original code. In a setting where code structure is
being optimised this technique can be applied automatically with a
tool such as JavaParser.4

Note that, by using dummy loops, we make the assumption
that all lines of code are equal in terms of usage, however, differ-
ent instructions can have small differences in energy consump-
tion [35, 36]. However, in this setting, where the target code ex-
clusively uses CPU and RAM, the assumption of uniform usage
doesn’t adversely affect search. Of course, final validation of the
optimised configuration using the non-amplified code is required
and this validation is presented later.

CPU Utilisation Model. To build the CPU utilisation model for
the Nexus 9, the amplified version of Rebound, used for the in-vivo
energy measurement above, is run with a set of 15 different con-
figurations5. Each run is repeated eleven times at different CPU
frequencies. During the run, the system statistics are accessed for
system software clock expressed in jiffy counts as a measure of
CPU utilisation. In these experiments, the precautions described
in [3] were taken to minimise the effects of temperature, memory-
consumption, file-system overhead, hardware and software gover-
nors, and other peripheral devices.

Figure 1(a) shows the mapping of jiffies to energy use, for dif-
ferent CPU frequency levels. As can be seen, the CPU utilisation
expressed in jiffies and energy use is linear. While this finding for
Rebound on our hardware aligns with other works in the literature
[14, 39, 41], such relationships do not, by any means, hold in all
settings and can even vary across devices [13, 28].

Lines-of-Code Model. As another basis for comparison, we use
the number of executed lines-of-code (LOC), to estimate the energy
consumption. In in this model we use experimental data from pro-
filing the CPU at 1.4 GHz. It can be observed from Figure 1(b), the
energy consumption linearly correlates with the executed LOC for
Rebound. The R2 of the model is 0.99, indicating a strong correla-
tion. Moreover, the computed mean absolute percentage error is
less than 1%.

4JavaParser, https://javaparser.org/, accessed on 10 May 2018.
5We use these configurations to vary the CPU workload.

3.3.2 Fitness: Accuracy. The second dimension of the fitness
function is the accuracy of Rebound’s output. When the Rebound
library is run, it produces a single-dimensional trace of spring
positions. In this work, the accuracy is determined by comparing the
trace produced by the Rebound variant with the original Rebound.
Variants whose traces closely track the original trace receive high
accuracy. Major deviations from this trace receive low accuracy.

3.4 Refining the Search Space
The search space for the optimisation of Rebound are constants
lifted from the code for the purpose of deep parameter optimisation.
There are dozens of such parameters, which is an impractically
large number to optimise with a quite limited number of function
evaluations. To reduce the number of parameters, we conduct a
sensitivity analysis to isolate the parameters to which the energy
consumption of Rebound is most sensitive.

We profile Rebound by running its test suite and compute the
code coverage to determine the frequently executed methods. In
our case we find that most calculations are performed in just one
Java class, Spring. For example, the previously mentioned advance
method, which performs the physics calculations, is the second-
most called method (9406 times).6 These calculations are mainly
executed inside a loop, which is considered an energy hotspot [1].
The most frequently called method is isAtRest (20340 times, also
in Spring), which performs a rather simple calculation. All other
methods consume relatively few computational resources. This
class is therefore targeted exclusively as the other classes are un-
likely to contain parameters that are worth optimising.

The class Spring contains 24 parameters. To check their impact
on energy use, each parameter is multiplied by (10)x , where x is
an integer in the range [−3, 3]. The test is then executed 11 times
for each parameter’s setting. One test run takes about 15 seconds.

The parameters fall into three categories with respect to tests.
First, sensitive parameters are those where the applied changes
induce a significant change in energy use — these are worth opti-
mising. Second, insensitive parameters create little change in energy
consumption. Third, too-sensitive parameters cause a timeout in
response to changes in parameter values. Within the category of
sensitive parameters, alterations to values may reduce loop itera-
tions [32], or disable certain costly branches [40] to reduce energy
usage. Because we permit deviation from the test oracles, it is likely
that trade-offs can be found to minimise the consumed energy at
the expense of test quality [8]. For the purposes of optimisation,
the sensitive parameters are represented by an n-tuple of numbers
to form a solution. A fitness value for the objectives of energy and
accuracy is assigned to each solution.

Among the 24 parameters in Spring, nine parameters can be
classified as sensitive. Since the number of evaluations is limited
in our experiments, we furthermore select from these nine only
those parameters that reduce the overall CPU utilisation (i.e. CPU
jiffies) by at least 20%. Table 1 shows the selected five parameters,
the number of jiffies required to run the test suite and the reduction
percentage. Interestingly, the impact on CPU use starts to appear
only after at least two magnitudes of change in all parameters,

6Determined by Corbertura 2.1.1, available at http://cobertura.github.io/cobertura/,
accessed 10 May 2018. The total class/line/branch coverage is 40%/61%/61%.

https://javaparser.org/
http://cobertura.github.io/cobertura/


In-vivo and offline optimisation in the presence of small energy signals MobiQuitous ’18, November 5–7, 2018, New York, NY, USA

except for Spring_DOUBLE_24_1 which dramatically decreases
the number of jiffies (reduction by 91%). These findings conform
with previous research on deep parameter optimisation, which
indicate that the majority of exposed parameters are not worth
optimising [6, 40].

Parameter Name Multiplication
Factor Jiffy Reduction %

Original n/a 1524 n/a
Spring_DOUBLE_26_1 1000 116 92%
Spring_DOUBLE_24_1 0.001 128 91%
Spring_DOUBLE_26_1 10 397 74%
Spring_DOUBLE_377_3 1000 1000 34%
Spring_DOUBLE_46_1 1000 1034 32%
Spring_DOUBLE_377_1 1000 1034 32%
Spring_DOUBLE_377_3 100 1048 31%
Spring_DOUBLE_377_1 100 1049 31%
Spring_DOUBLE_46_1 100 1181 23%

Table 1: The five selected parameters after the sensitivity
analysis. The parameters’ names reflect their properties. For
example, Spring_DOUBLE_377_3 is the third floating-point
number used in line 377 of the Spring class.

Figure 2 shows a comparison between the original configura-
tion (default values) and the selected parameters for optimisation.
As can be seen, the search space is non-monotonic. For example,
changes to SPRING_DOUBLE_26_1 can drastically improve the
energy efficiency after being multiplied by 10 and 1000, however,
multiplying it by 100 (and by quite a few other numbers not listed
here) results in timeouts.

3.5 Initialisation
While we could create the initial population (i.e., the initial set
of program configurations) by generating random solutions, we
attempt to maximise diversity by sampling both energy-hungry
and energy-frugal values for parameter settings.

As with the sensitivity analysis, we base the seed population on
the original program configuration, and then multiply selected pa-
rameters by factors of the form 10x . The exponent here is randomly
drawn from a Gaussian distribution with σ = 3, to allow us to cover
an even greater space than the original sensitivity analysis.

Individuals are generated until the initial population is seeded
with µ = 25 valid parameter vectors. We limit the perturbations
to only two parameters (dimensions) per solution, to reduce the
number of timed-out (invalid) solutions generated: we found that
one and two dimensional changes in one solution takes require
than 50 trials while more changes take up to 120 trials. Figure 3
shows an example of an initial population.

4 EXPERIMENTS
As mentioned previously, we use NSGA-III [12], a genetic algorithm
designed for multi-objective search, as implemented by the MOEA
Framework.7 Three experiments are conducted where energy use

7MOEA Framework version 2.12 available at http://moeaframework.org, accessed 10
May 2018. We leave all variation operators and variation probabilities at their standard
values.

obtained by the internal meter, and via our jiffy and LOC models.
The in-vivo experiments were conducted on Nexus 9 tablet running
Android 6, whereas the off-line experiment (using the LOC model)
was performed on a Windows 10 machine with 16GB memory and
Intel i7-6700 CPU clocked at 3.4GHz.

Note that we use the algorithm purely for the purpose of navigat-
ing the trade-off space, and as part of this study to optimise small
energy signals. For a current overview of current multi-objective
algorithms, we refer the interested reader to [10, 24].

Any parameter is constrained to values between 0 and 10000;
their original values are between 0 and 6. With a population size
of µ = 25, we seed the initial generation using the steps described
above. With this setup we run for 1250 evaluations. Since two of
the experiments run in-vivo (optimisation based on internal meter
readings and the jiffy model), we use similar settings to those found
in [3] to overcome Android’s challenges for energy optimisation
experiments. In addition, we limit the generation size to avoid any
variation in voltage, as this is a real energy-based experiment. In
case of having a generation full of invalid solutions (worst case
scenario), the timeouts are responsible for longer runtimes, and
thus for longer discharge phases, voltage drops, and less reliable
readings.

4.1 Results
4.1.1 Configurations in the objective space. Figure 4 shows a

summary of the results. In the left column, we show the evaluated
solutions as well as the Pareto front obtained. In the right column,
we focus on the nine to twelve solutions of the Pareto front and the
values of the corresponding decision variables.8

Let us start with the topmost row, i.e., the results for the opti-
misation that ran in-vivo and that used the raw energy readings
as provided by the battery sensor. As can be seen, there are nine
non-dominated solutions. In terms of energy efficiency, the best
solution found uses 2.4 mWh in the raw energy optimisation, and
the optimiser took 991 fitness evaluations to find it. This compares
favourably with 13.4 mWh used by the original configuration. On
the other hand, its accuracy deviates by 1.2 on overall, and it passes
only one test, making it the worst solution on the front in terms of
accuracy.

Let us briefly investigate a particular solution to see the trade-off
of how a configuration change affects energy consumption. In the
run that used the raw readings, the solution with the second-lowest
energy consumption (second marked red dot from the left) con-
sumes 4.5 mWh and has an acceptable deviation from the test oracle.
Although it fails to pass five test cases, its deviation is relatively
small with average of average absolute deviation of 0.09. Figure 5
shows the results of testing the Spring positions/steps while being
in motion on all six tests. As can be seen, after evolving the new
values, the deviation is very small and might not even be noticeable
by a user.

8In the context ofmulti-objective optimisation, the optimal solutions are also referred to
as non-dominated solutions, and they form the so-called Pareto front. In a minimisation
problem, a solution x is considered non-dominated in comparison to another solution
x* when no objective value of x* is less than x and at least one objective value of x* is
greater than x. For a more comprehensive introduction we refer the interested reader
to [10, 24].

http://moeaframework.org


MobiQuitous ’18, November 5–7, 2018, New York, NY, USA M. Bokhari et al.

Figure 2: Comparison of the original configuration with modifications of the sensitive parameters. The numbers 0.1 to 1000
denote the factors by which the original value of the parameter is multiplied. Red crosses show timed-out configurations.

0 5 10 15 20 25
seeds

10-6

10-4

10-2

100

102

104

ra
ti

o

Initial Seeds Ratio to The Original Values

DOUBLE-46-1
DOUBLE-377-1
DOUBLE-377-3
DOUBLE-26-1
DOUBLE-24-1

Figure 3: The amount ofmodification applied to each param-
eter in the seeded first generation of µ = 25 solutions. Only
two parameters are altered per solution (two dimensions).

Coming back to Figure 4, the second and third rows show the
optimisation results obtained based on our jiffy and LOC-based
energy models. In the extreme case, the energy use was reduced to
2.95 mWh and 3 mWh.

For a quick check of the diversity along the two objectives, we
use the coefficient of variation (CV). For the optimisation based on
raw readings, the CV values are 55% and 163% for energy use and
accuracy. The CV values for the fronts resulting from the model-
based optimisation are comparable: for energy/oracle deviation
they are 56%/192% and 63%/186% for the jiffy and the LOC models.

4.1.2 Configurations in the decision space. The right column
of Figure 4 illustrates the actual solutions of the Pareto fronts in
the three experiments. To allow for an easy comparison with the
original configuration, we provide the solutions as factors applied
to the original configuration. These Pareto-optimal solutions are
sorted from left to right in increasing order based on their increase
in energy consumption (and thus in decreasing order of test devia-
tion).

Quite surprisingly, the solutions of the three fronts are rela-
tively similar. For example, DOUBLE_46_1 (blue) is almost always
increased by about five orders of magnitude. This parameter repre-
sents the rest-speed threshold at which the Spring is determined
to be at rest. Also, DOUBLE_24_1 (dark green) is modified by two
to four orders of magnitude, and the others often just compara-
tively little. To us, this is additional evidence that (1) the developed

models are consistent with the real world, and (2) the results are
reproducible, even when using a different model or the real device.

When we have a closer look at the individual fronts, additional
patterns emerge. For example, as energy consumption increases
from left to right, DOUBLE_24_1 (dark green) appears to be de-
creasing in the model-based results. Regarding the other constants,
higher order dependencies exist, so no one single parameter “drives”
the tradeoff.

4.2 Pareto Front Validation
Next, we validate solutions found on the three Pareto fronts. The
validation process consists of removing the dummy-for loops, and
running the test suite by repeating the actual call to the advance
function 1000 times. During the test run, the energy is measured
by the internal meter. The test run is repeated 31 times for each
solution.

Figure 6 shows the result of the validation and a comparison with
running the default values of the parameters with the same settings.
As can be seen, all of the optimised variants have a significant
difference compared to the original settings. This indicates the
feasibility of using energy models as a fitness function. Despite the
battery’s internal meter being less accurate than expensive external
meters, the results demonstrate that it can be used for optimising
energy efficiency in-vivo. This is because these types of internal
meters are precise [4] and therefore can be used to rank solutions
in terms of energy use. Also, this does not require developers to
have a special skills to obtain energy readings.

To determine whether the difference between the amount of en-
ergy consumed by the original version and evolved variants of each
subject is statistically significant, we use the right-tailed Wilcoxon
rank-sum test, where the alternative hypothesis states that the me-
dian of the original configuration is greater than the median of the
improved variant. We chose Mann-Whitney-Wilcoxon test due to
the observation of having non-normal distribution. All obtained p-
value for each test are less than 0.005, indicating a highly significant
difference in the results. For instance, the p-values for the solutions
raw 1 and jiffy 1 in comparison with the original configuration are
1.3 · 10−4 and 1.4 · 10−9, which we consider to be highly significant.

In order to better quantify our improvements, we measured the
test framework’s overhead by running the test suite with an empty
advance function. It was found that the overhead amounts to 66%



In-vivo and offline optimisation in the presence of small energy signals MobiQuitous ’18, November 5–7, 2018, New York, NY, USA

Figure 4: Optimisation results. Left: solutions in the objective space (black) with the initial population circled, the Pareto front
circled red and highlighted solutions for the later validation marked as solid red circles; the original configuration in light
green. Right: solutions on the Pareto front in the decision space.

0 5 10 15
0

0.5

1

0 5 10 15
0

2

4

6

8

0 10 20 30

0

0.5

1

0 50 100
0

0.5

1

1.5

0 25 50

0

0.5

1

0 50 100
-5

0

5

10

Figure 5: Spring’s expected result (test oracle, red) vs. the actual result (blue) of the second marked solution from raw energy
optimisation experiment on six test cases. Animation steps are on the x-axis and the spring’s position or velocity is on the
y-axis.

of the default configuration runs (based on the median of each set
of the 31 runs of each setup). After deducting it from the results
in Figure 6, the actual improvements in the energy efficiency of
running Rebound’s test cases using the found configurations range
between 7-22% (based on the medians) across the seven shown
solutions. We conjecture that Rebound’s developers might not be
aware of such an energy improvement at the expense of a slight
deviation from the functional requirement.

Finally, we use a Nexus 6 phone running Android 6 to check if
the evolved solutions can improve the energy efficiency on another
device other than the Nexus 9. In terms of hardware specifications,
both devices are drastically different. For example, The Nexus 6 is
powered by a 2.7 GHz quad-core Snapdragon 805 processor with
3 GB of RAM, where as the Nexus 9 has 2 GB of memory and its
system chip is NVIDIA Tegra K1 with a 2.3 GHz dual-core Denver
CPU. It is worth mentioning that the battery fuel gauge on Nexus



MobiQuitous ’18, November 5–7, 2018, New York, NY, USA M. Bokhari et al.

o
ri

g
in

al

ra
w

 1

ra
w

 2

ra
w

 3

jif
fy

 1

jif
fy

 2

lo
c 

1

lo
c 

2

1.7

1.8

1.9

2

en
er

g
y 

n
W

h

107 Front Validation on Nexus 9

Figure 6: On-device validation of highlighted solutions from
Figure 4; this is the non-amplified code. raw 2 is shown in
Figure 5. The median of the test overhead is 1.22nWh.

o
ri

g
in

al

ra
w

 1

ra
w

 2

ra
w

 3

jif
fy

 1

jif
fy

 2

lo
c 

1

lo
c 

2

3.5

4

4.5

5

5.5

ch
ar

g
e 

n
A

h

106 Front Validation on Nexus 6

Figure 7: Validation of solutions from Figure 4 on Nexus 6.

6 reports the remaining charge in nAh, and we use it without any
conversion.

Figure 7 shows the results of validating the marked solutions
from 4 and the original configuration on Nexus 6 using the same
settings mentioned earlier in this section. As can be seen, inter-
estingly, the overall trend is similar to the results found on the
optimisation platform (i.e. Nexus 9) though the two devices have
different hardware specifications. In addition, the jiffy 1 variant
still uses the lowest amount of charge among the validated solu-
tions. Running the right-tailed Wilcoxon rank-sum test on them
indicates the difference (to the original charge usage) is statistically
significant. For example, the (p-value is 1.41 · 10−9) when raw 2 is
compared to the original configuration.

5 CONCLUSIONS
The optimisation of non-functional properties of applications is
of increasing interest: while developers generally lack the skill,
search-based software engineering can assist with an automated

approach. When it comes to minimising the consumption of energy,
one has to deal with noisy sensors, huge search spaces, and long
evaluation times.

In this article, we demonstrated that it is possible to detect small
changes in energy consumption using code rewriting. This was
required to explore the configuration space of an Android physics
library. To speed up the optimisation process, we created models
based on runtime and lines-of-code, which were sufficiently precise
to guide the optimisation. The former still requires to be run on the
device, however, it no longer requires to connect and disconnect
the device for each configuration evaluation. The latter model can
run entirely on the computer and thus is significantly faster.

The results show that substantial energy savings of up to 22%
can be achieved for our target application (after deducting the test
overhead), at comparatively little deviation from the functional
requirement.

In the future, we will tackle video decoders that are embedded
deep within the operating system, and the inherently noisy data
communication.

6 ACKNOWLEDGEMENTS
Mahmoud Bokhari has been sponsored by Saudi Arabia Cultural
Mission (SACM). Markus Wagner has been supported by ARC
Discovery Early Career Researcher Award DE160100850.

REFERENCES
[1] Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and Abhik Roychoud-

hury. 2014. Detecting energy bugs and hotspots in mobile apps. In 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering (FSE).
ACM, 588–598.

[2] S. Bhadra, A. Conrad, C. Hurkes, B. Kirklin, and G. M. Kapfhammer. 2009. An
experimental study of methods for executing test suites in memory constrained
environments. InWorkshop on Automation of Software Test. 27–35.

[3] Mahmoud A. Bokhari, Bobby R. Bruce, Brad Alexander, and MarkusWagner. 2017.
Deep Parameter Optimisation on Android Smartphones for Energy Minimisation:
A Tale of Woe and a Proof-of-concept. In Genetic and Evolutionary Computation
Conference (GECCO) Companion (GI Workshop). ACM, 1501–1508.

[4] Mahmoud A. Bokhari, Yuanzhong Xia, Bo Zhou, Brad Alexander, and Markus
Wagner. 2017. Validation of Internal Meters of Mobile Android Devices. CoRR
abs/1701.07095 (2017).

[5] A. E. I. Brownlee, N. Burles, and J. Swan. 2017. Search-Based Energy Optimiza-
tion of Some Ubiquitous Algorithms. IEEE Transactions on Emerging Topics in
Computational Intelligence 1, 3 (2017), 188–201.

[6] Bobby R. Bruce, Jonathan M. Aitken, and Justyna Petke. 2016. Deep Parameter
Optimisation for Face Detection Using the Viola-Jones Algorithm in OpenCV. In
Symposium on Search-Based Software Engineering (SSBSE). Springer, 238–243.

[7] Bobby R. Bruce, Justyna Petke, and Mark Harman. 2015. Reducing energy con-
sumption using genetic improvement. In Genetic and Evolutionary Computation
Conference (GECCO). ACM, 1327–1334.

[8] B. R. Bruce, J. Petke, M. Harman, and E. T. Barr. 2018. Approximate Oracles
and Synergy in Software Energy Search Spaces. IEEE Transactions on Software
Engineering (2018), 1–1. https://doi.org/10.1109/TSE.2018.2827066 Accepted.

[9] Nathan Burles, Edward Bowles, Alexander E. I. Brownlee, Zoltan A. Kocsis, Jerry
Swan, and Nadarajen Veerapen. 2015. Object-Oriented Genetic Improvement
for Improved Energy Consumption in Google Guava. In Search-Based Software
Engineering. Springer, 255–261.

[10] Shelvin Chand and Markus Wagner. 2015. Evolutionary many-objective opti-
mization: A quick-start guide. Surveys in Operations Research and Management
Science 20, 2 (2015), 35 – 42.

[11] Naehyuck Chang, Kwanho Kim, and Hyung Gyu Lee. 2000. Cycle-accurate
Energy Consumption Measurement and Analysis: Case Study of ARM7TDMI. In
International Symposium on Low Power Electronics and Design. ACM, 185–190.

[12] K. Deb and H. Jain. 2014. An Evolutionary Many-Objective Optimization Al-
gorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I:
Solving Problems With Box Constraints. IEEE Transactions on Evol. Computation
18, 4 (2014), 577–601.

[13] Mian Dong and Lin Zhong. 2011. Self-constructive High-rate System Energy
Modeling for Battery-powered Mobile Systems. In Mobile Systems, Applications,

https://doi.org/10.1109/TSE.2018.2827066


In-vivo and offline optimisation in the presence of small energy signals MobiQuitous ’18, November 5–7, 2018, New York, NY, USA

and Services. ACM, 335–348.
[14] Jason Flinn and M. Satyanarayanan. 1999. PowerScope: A Tool for Profiling

the Energy Usage of Mobile Applications. In 2nd Workshop on Mobile Computer
Systems and Applications. IEEE, 2.

[15] Shuai Hao, Ding Li, William G. J. Halfond, and Ramesh Govindan. 2012. Esti-
mating Android Applications’ CPU Energy Usage via Bytecode Profiling. In 1st
International Workshop on Green and Sustainable Software. IEEE Press, 1–7.

[16] Shuai Hao, Ding Li, William G. J. Halfond, and Ramesh Govindan. 2013. Estimat-
ing Mobile Application Energy Consumption Using Program Analysis. In 2013
International Conference on Software Engineering. IEEE Press, 92–101.

[17] Abram Hindle, Alex Wilson, Kent Rasmussen, E. Jed Barlow, Joshua Charles
Campbell, and Stephen Romansky. 2014. GreenMiner: A Hardware Based Min-
ing Software Repositories Software Energy Consumption Framework. In 11th
Working Conference on Mining Software Repositories (MSR). ACM, 12–21.

[18] Ahmed Hussein, Mathias Payer, Antony Hosking, and Christopher A. Vick.
2015. Impact of GC Design on Power and Performance for Android. In 8th
ACM International Systems and Storage Conference (SYSTOR). ACM, Article 13,
12 pages.

[19] Android Inc. 2017. Background locationOLD Limits. http://tiny.cc/locold
[20] Qualcomm Innovation Center Inc. 2014. Trepn Profiler. https://developer.

qualcomm.com/software/trepn-power-profiler/tools Accessed 10 May 2018.
[21] Maxim Integrated. 2016. MAX17047/MAX17050 ModelGauge m3 Fuel Gauge.

https://datasheets.maximintegrated.com/en/ds/MAX17047-MAX17050.pdf Ac-
cessed 10 May 2018.

[22] Reyhaneh Jabbarvand, Alireza Sadeghi, Joshua Garcia, Sam Malek, and Paul
Ammann. 2015. EcoDroid: An Approach for Energy-based Ranking of Android
Apps. In 4th International Workshop on Green and Sustainable Software. IEEE
Press, 8–14.

[23] William B. Langdon, Justyna Petke, and Bobby R. Bruce. 2016. Optimising
Quantisation Noise in Energy Measurement. In Parallel Problem Solving from
Nature (PPSN). Springer, 249–259.

[24] Bingdong Li, Jinlong Li, Ke Tang, and Xin Yao. 2015. Many-Objective Evolutionary
Algorithms: A Survey. Comput. Surveys 48, 1, Article 13 (2015), 35 pages.

[25] Ding Li, Shuai Hao, William G. J. Halfond, and Ramesh Govindan. 2013. Calcu-
lating Source Line Level Energy Information for Android Applications. In 2013
International Symposium on Software Testing and Analysis (ISSTA). ACM, 78–89.

[26] Ding Li, Angelica Huyen Tran, and William GJ Halfond. 2014. Making web
applications more energy efficient for OLED smartphones. In 36th International
Conference on Software Engineering (ICSE). 527–538.

[27] Mario Linares-Vásquez, Gabriele Bavota, Carlos Eduardo Bernal Cárdenas, Rocco
Oliveto, Massimiliano Di Penta, and Denys Poshyvanyk. 2015. Optimizing Energy
Consumption of GUIs in Android Apps: A Multi-objective Approach. In 10th
Foundations of Software Engineering. ACM.

[28] John C. McCullough, Yuvraj Agarwal, Jaideep Chandrashekar, Sathyanarayan
Kuppuswamy, Alex C. Snoeren, and Rajesh K. Gupta. 2011. Evaluating the Effec-
tiveness of Model-based Power Characterization. In USENIX Annual Technical
Conference. USENIX Association, 12–25.

[29] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An Empirical Study of
API Stability and Adoption in the Android Ecosystem. In 2013 IEEE International
Conference on Software Maintenance (ICSM). IEEE Computer Society, 70–79.

[30] Candy Pang, Abram Hindle, Bram Adams, and Ahmed E. Hassan. 2016. What
Do Programmers Know about Software Energy Consumption? IEEE Software 33,
3 (2016), 83–89.

[31] Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-Min Wang.
2011. Fine-grained Power Modeling for Smartphones Using System Call Tracing.
In European Conference on Computer Systems. ACM.

[32] Fabio Pellacini. 2005. User-configurable automatic shader simplification. ACM
Transactions on Graphics 24, 3 (2005), 445.

[33] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon,
David R. White, and John R. Woodward. 2017. Genetic Improvement of software:
A comprehensive Survey. IEEE Transactions on Evolutionary Computation (2017).
To Appear.

[34] Eric Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, and Westley
Weimer. 2014. Post-compiler Software Optimization for Reducing Energy. In 19th
International Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 639–652.

[35] A. Sinha and A. P. Chandrakasan. 2001. JouleTrack-a Web based tool for software
energy profiling. In 38th Design Automation Conference (IEEE Cat. No.01CH37232).
220–225.

[36] Stefan Steinke, Markus Knauer, Lars Wehmeyer, and Peter Marwedel. 2001. An
accurate and fine grain instruction-level energy model supporting software opti-
mizations. In International Workshop on Power and Timing Modeling, Optimization
and Simulation (PATMOS). 10.

[37] James Tiongson. 2015. Mobile App: Marketing Insights. http://tiny.cc/twg
[38] Narseo Vallina-Rodriguez, Pan Hui, Jon Crowcroft, and Andrew Rice. 2010. Ex-

hausting battery statistics: understanding the energy demands on mobile hand-
sets. In Workshop on Networking, systems, and applications on mobile handhelds.
ACM, 9–14.

[39] Karel De Vogeleer, Gérard Memmi, Pierre Jouvelot, and Fabien Coelho. 2014. The
Energy/Frequency Convexity Rule: Modeling and Experimental Validation on
Mobile Devices. CoRR abs/1401.4655 (2014). arXiv:1401.4655

[40] Fan Wu, Westley Weimer, Mark Harman, Yue Jia, and Jens Krinke. 2015. Deep
parameter optimisation. In Genetic and Evolutionary Computation Conference
(GECCO). ACM, 1375–1382.

[41] Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo Kang, and Hojung Cha.
2012. AppScope: Application Energy Metering Framework for Android Smart-
phones Using Kernel Activity Monitoring. In USENIX Conference on Annual
Technical Conference. USENIX Association.

http://tiny.cc/locold
https://developer.qualcomm.com/software/trepn-power-profiler/tools
https://developer.qualcomm.com/software/trepn-power-profiler/tools
https://datasheets.maximintegrated.com/en/ds/MAX17047-MAX17050.pdf
http://tiny.cc/twg
http://arxiv.org/abs/1401.4655

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Target Application
	3.2 Evolutionary Framework
	3.3 Fitness Functions
	3.4 Refining the Search Space
	3.5 Initialisation

	4 Experiments
	4.1 Results
	4.2 Pareto Front Validation

	5 Conclusions
	6 Acknowledgements
	References

