
A Framework for Automated Measurement
of Energy Consumption in Multiple

Android Devices

Lujun Weng

Supervisor: Markus Wagner

Co-Supervisors: Brad Alexander, Mahmoud Bokhari

November 2018

Thesis submitted for the degree of Master in Computer Science

SCHOOL OF COMPUTER SCIENCE



Declaration

Except where stated this thesis is, to the best of my knowledge, my own work and
my supervisor has approved its submission.

Signed by student:

Date:

Signed by supervisor:

Date:

i

02/11/2018

Yan的 iPad



Yan的 iPad
02/11/2018



Acknowledgements

I would like to express my deepest gratitude to my supervisor Dr. Markus Wagner,
for his continuous support, encouragement and guidance throughout this research
project.

I am also deeply grateful to Mr. Mahmoud Bokhari and Dr. Brad Alexander for their
valuable suggestions and help.

I would also like to thank my family for their endless encouragement and support.

ii



Abstract

Smartphones are very common now. Due to limited battery capacity of smartphones,
increasingly more researchers and developers are interested in energy efficiency of
these devices. When it comes to energy efficiency, energy consumption measurement
is usually an important task, but the task could be time-consuming and involve many
manual operations. Therefore, in order to ease the task, this research project focuses
on investigating potential solutions to automating the process of energy consumption
measurement of applications in Android devices. The goal is developing a prototype
framework to automate the process. One core challenge of automating the measure-
ment process is control over charging. Different solutions are proposed and analysed
for the charging control. Two of them, programmatical and relay-based methods, are
evaluated and used in the framework. The initial version of the framework utilises
the programmatical method. Despite the method’s inherent drawbacks, it is used
for integrating other components with the framework. Later, it is replaced by the
relay-based method, which introduces complexity but make the framework applicable
to more devices. Therefore, the framework is improved based on this alternative and
more functions are added to the framework. The framework is then verified in practice
through a case study. Certainly, more studies need to be conducted for testing the
framework and there are still important features that have not been added into the
framework. All of them would be focused in the future development of the framework.

iii



Contents

1 Introduction 1
1.1 About the research project . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 4
2.1 Methods of energy consumption measurement . . . . . . . . . . . . . . 4
2.2 Related test frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Framework Design 6
3.1 User stories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Requirements analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 General architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Control over charging . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4.1 Programmatical Method . . . . . . . . . . . . . . . . . . . . . . 9
3.4.2 Programmable USB Hub . . . . . . . . . . . . . . . . . . . . . 9
3.4.3 Relay-based Solution . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Implementation 11
4.1 Components in Android devices . . . . . . . . . . . . . . . . . . . . . . 11

4.1.1 Interaction among the components . . . . . . . . . . . . . . . . 13
4.2 Command line tool for users . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Two-way communication . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Control over charging . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.4.1 Programmatical method . . . . . . . . . . . . . . . . . . . . . . 15
4.4.2 Relay-based solution . . . . . . . . . . . . . . . . . . . . . . . . 17

4.5 Control over other factors . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 A Case Study 21
5.1 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Conclusion 28

iv



Bibliography 30

Appendices 32

A List of pairwise statistical test of Rebound library’s variants 33

v



Chapter 1

Introduction

This chapter introduces the research project and the thesis. More specifically, a brief
description is given for the project itself at first. After that, background, motivation
and objectives of the project are provided. The structure of the thesis is outlined at
the end of this chapter.

1.1 About the research project

This thesis is a report of the research project for my Master’s degree on Computer
Science in the University of Adelaide. It lasted for two semesters, from February to
October 2018.

The project is about measuring energy consumption of applications in Android
devices, which is a common but nontrivial task for energy-related work. The whole
process could be time-consuming and involve many manual operations. Therefore,
the project focuses on automating energy consumption measurement of application
across multiple Android devices. Two general goals for this project are 1) to prove
that the whole process of energy consumption measurement in Android devices can be
automated and 2) to develop a prototype framework for automating the measurement
process.

1.2 Background

Smartphones are everywhere now. According to this report [20], about 45% of Amer-
ican adults own smartphones and that is the statistics in 2012. With the ubiqui-
tousness of smartphones, interests on energy efficiency of mobile phones have been
growing in recent years due to their limited battery capacity. One direction towards
energy efficiency is through energy management technologies which have been stud-
ied, developed and used in modern mobile devices by mobile phone manufacturers and
operating system builders. They regard energy saving technologies and long battery
duration as key features when they are marketing their products. Another direction
researchers are growing interest on is through changing software code. It has been
shown that energy efficiency of a particular mobile phone application can be improved
by changing the code [11]. Researchers also started to look at how to automatically
optimising software to achieve energy minimisation, because it is somewhat unrealistic
to demand every developer to be aware of energy efficiency issue [5, 18]. Among these

1



and other energy-related studies, there is a common and key task, namely energy
consumption measurement of a particular application in mobile phones.

1.3 Motivation

Researchers have been looking at energy efficiency of mobile phones for many years
and methods are being proposed from time to time for estimating energy consump-
tion of mobile devices [12]. The purposes of measuring energy consumption usually
include code optimisation, detecting energy bugs and better battery management
[11, 4, 3]. One common drawback of these energy-related approaches is that they are
not automatic and cannot be applied at the time in multiple devices.

On the other hand, there are testing tools that can automate the testing of applica-
tions and control multiple devices simultaneously. For instance, the authors propose a
framework called SAPIENZ in [17], which can test applications automatically across
multiple devices in parallel. Using this framework, they tested the top 1,000 Google
Play applications and found 558 previous unknown crashes [17]. OpenSTF is another
similar framework with many features and a fancy user interface [6]. These tools
mitigate the process of testing applications in many devices. However, they are not
designed for measuring energy consumption.

Therefore, if we can bring in the features of these testing tools, the process of
measuring energy consumption might be more easily applied to multiple applications
and devices.

1.4 Objectives

In this research project, the general goal is to ease the process of energy consumption
measurement in Android platform to make it automatic and even parallel. The reason
why Android platform is chosen to be the objective platform is that Android phones
are ubiquitous and Android operating system’s source code is accessible. According
to this report [21], Android smartphones took the largest amount of the market share
with 81.7% as of the fourth quarter of 2016. It is also the platform many researchers
base on and therefore hopefully this project can help more researchers. Ultimately,
this can also benefit application developers with more energy efficient applications.
More specifically, the aims of this master project are to

1. review current energy consumption measurement methods and propose a feasi-
ble measurement process;

2. build tools to automate the measurement process; and

3. conduct measurement simultaneously in multiple devices.

In order to guide the research at the beginning stage of this project, the following
questions are proposed based on the objectives:

1. What are pros and cons in current methods?

2. What are the common steps in current methods?

3. What factors need to be configurable when setting up test environment?

4. What factors can be controlled or to what extent we can control them?

2



5. How can the measurement process be automatic and run in multiple devices
simultaneously?

6. How can comparative testing of software configurations be integrated into the
workflow of app developers?

1.5 Document structure

Chapter 2 Literature Review : provides a review of relevant methods of energy
consumption measurement in Android devices as well as frameworks that are
similar to the one developed in this project.

Chapter 3 Framework Design: provides a general design of the framework and
analyse several solutions to control over charging.

Chapter 4 Implementation: describes and analyses the implementation of the
framework, including major components and methods.

Chapter 5 A Case Study : provides an energy-related case study, with the data
collected using the framework.

Chapter 6 Conclusion: provides a summary of key points of the thesis and
future work.

3



Chapter 2

Literature Review

Since this research project draws ideas from both energy-related and test-framework-
related research, this chapter for literature review will be divided into two sections.
One is for methods of energy consumption measurement. It reports about recent
work on energy efficiency and different approaches to measuring energy consumption
in smartphones. The other section is for related test frameworks. Test frameworks
usually enable automatic and parallel tests, but they do not have energy-related
functions. Looking into these frameworks would provide useful ideas for this project.

2.1 Methods of energy consumption measurement

Hoque et al. [12] provides a very comprehensive survey of the energy consumption of
mobile devices. More specifically, they first summarise a list of terminologies used in
this field, which is helpful for people who want to have a general idea of key compo-
nents in different types of solutions. Then, they classify different solutions according
to their implementation and deployment strategies [12]. Also, they make a comparison
among different types of solutions in terms of capabilities and performance.

Generally, there are three types of methods for the energy consumption measure-
ment in mobile devices [12]. The first one is using external instruments. The external
instruments can measure the current used by smartphones directly. This type of
methods usually can provide high precision and accuracy [12]. Researchers already
successfully conducted several energy-related studies by using this type of methods.
For example, Hindle et al. [11] applies external meter to create a framework called
Green Miner in the field of Green Mining. They demonstrate the effectiveness of
Green Miner in power optimisation of graphical user interface (GUI) [11, 24]. Also,
according to the report [11], Green Miner successfully helped to find an energy bug
in a Reddit reader app. Another example of applying external instruments for energy
consumption measurement can be found in the report of Banerjee et al. [3]. Baner-
jee et al. [3] utilise this kind of measurement technique to detect energy bugs and
hotspots in mobile phones and they have successfully evaluated their framework in
30 free Android applications from Google Play [3].

The second type of method is model-based. According to Hoque et al. [12],
the power consumption model can be based on utilisation, events and code analysis.
Zhang et al. [23] and Pathak et al. [19] report in detail about utilisation-based and
event-based models respectively.

The third type of method is using the fuel gauge and the battery APIs [12].
Modern smartphones usually come with battery fuel gauge, which is able to read

4



battery information like voltage and current. This kind of information then can
be access through the battery APIs, such as BatteryManager in Android SDK [8].
Bokhari et at. [5] has already applied this method in deep parameter optimisation
on Android smartphones for energy minimisation. In that application [5], they utilise
the internal fuel gauge and the battery APIs to do energy minimisation of Rebound

library [7].

2.2 Related test frameworks

For related test frameworks, one significant work is from Mao et at. [17], who pro-
pose a framework called Sapienz for multi-objective testing. This framework can test
different applications in multiple mobile devices automatically and simultaneously.
According to their report, Sapienz outperforms some widely-used tools and revealed
558 unknown crashes in the top 1000 Google Play apps [17]. Another framework helps
this research project significantly is called Smartphone Test Farm (STF)[6]. It en-
ables remote control and management over smartphones from browser. Some features
include mouse and keyboard input, app upload, screen display etc. All these features
are also important for this research project and provide ideas when implementing the
framework in this project.

5



Chapter 3

Framework Design

One objective of this project is to build a framework that can help researchers to
measure mobile phone’s energy consumption easily and accurately. Therefore, this
chapter will focus on the high-level design of the framework. The actual implementa-
tion of the framework will be described later, but it is based on the design introduced
in this chapter.

This chapter will start with user stories and main requirements. They provide an
overview over the project and how will the framework be used from user’s perspective.
After that, general architecture of the framework will be described and this section will
also outline the main components in high level and interaction among the components.
The last part of this chapter is for control over charging. It is one of the main
requirements.

3.1 User stories

The following three user stories are what the project mainly deals with. Also, several
main requirements can be identified from them. The first user story can be described
as follows:

1. A user issues a command to measure an application’s energy consumption in a
device

2. The framework runs the application in the device and meanwhile records the
energy consumption

3. The framework gets back the result

The second use story can be described as follows:

1. A user issues a command to measure an application’s energy consumption in
multiple devices

2. The framework runs the application in these devices and meanwhile records the
energy consumption in each device.

3. The framework gets back results from all these devices

The third use story can be described as follows:

1. A user issues multiple commands to measure multiple applications in multiple
devices

6



2. The framework queues and runs these applications in the devices and records
the energy consumption

3. The framework gets back all results from these devices

The three user stories are somehow progressive. The latter user story can be built
upon on the former one. A core function of the framework that can be identified here
is able to run an application, record the energy consumption and get back the result
in a particular device.

3.2 Requirements analysis

This section provides a general requirements analysis. According to the user stories
described in the last section, three general requirements of the framework are listed
as follows:

1. Users shall be able to interact with the framework.

2. The framework shall be able to communicate with multiple connected Android
devices.

3. The framework shall be able to control Android devices.

Specifically, the first requirement requires the framework to provide a user inter-
face. The user interface could be in many forms, such as command line, graphical user
interface and even plugins of integrated development environments. Furthermore, the
user interface shall provide users with a simple operation for the core function that is
running a specific application under test in devices, recording the energy consumption
and getting back the result.

For the second and third requirements, they concern the interaction between the
framework and Android devices. Two key words in the statements are “communicate”
and “control”. How they are defined determines required functions for the second and
third requirements. The word “communicate” means the framework shall be able to
identify devices, send messages to devices and fetch relevant data from devices. The
word “control” means the framework shall be able to run specific tasks in Android
devices and change devices’ status to some extent. The tasks can be the app under
test as well as various services belonging to the framework.

While looking at the third requirement more closely, there are some more require-
ments worth mentioning here. In order to reduce the noise from the system during the
measurement of energy consumption, it is required that some aspects of Android de-
vices be controlled. The aspects include charging, CPU frequency, screen brightness,
network connection, airplane mode etc. Control over these aspects is an important
part of the framework, especially control over charging. Control over charging is also
essential for restoring battery capacity automatically.

Therefore, whether control over charging can be achieved is a key factor that
determines if the whole measurement process can be automated. As can be seen in the
following chapters, it will influence the implementation and some sections contribute
to this topic particularly.

3.3 General architecture

From the user stories and requirements analysis, the framework shall provide an
interface for users to interact with the framework and more importantly with devices.

7



Assuming users use a PC to interact with the framework, the framework should
enable mobile devices and a PC to communicate in bi-direction. For example, the
framework should be able to tell a device to run a particular application and record
the energy consumption, and the device should be able to inform the PC to pull back
the result when the recording finishes. Therefore, the core is communication with
multiple mobile devices. Figure 3.3.1 shows the general model of communication.

Figure 3.3.1: The general communication model

In order for successful communication to happen, there should be two services
running in the PC and devices respectively and a communication protocol for the two
services. In the thesis, the service running in the PC is called “the client” and the
service running in devices is called “the control service”. These two services, along
with app under test (AUT), consists of three main components of the framework. In
general, the client is responsible for interacting with users and communicating with the
control service; the control service is responsible for measuring energy consumption of
the app under test and communicating with the client. Figure 3.3.2 shows the three
components and interaction among them.

Figure 3.3.2: Main components in the framework and their interaction

3.4 Control over charging

Control over charging is important for automating the energy measurement process
and therefore a key part of the framework. It is needed when the measurement is
ongoing or devices are being recharged. The selected solution to it will influence the

8



framework design and implementation directly. Therefore, three candidate solutions
are introduced in this section.

3.4.1 Programmatical Method

Investigation shows that it is possible to stop charging an Android device while the
device is still connecting to a power source. If this is true, it can be utilised to stop
charging a device while keep the connection on. In this case, it acts as if there is no
the restriction and the PC and devices can communicate as normal.

Similarly, this solution also comes with drawbacks. It is unclear if this method
can be applied in every mobile device and every version of Android system. Since the
fragmentation is severe in Android ecosystem, it is impossible to test every device.
Therefore, this can never be proved or disproved. Another issue of this solution is
that it only works for rooted devices. In other words, every device needs to be rooted
before applying this method.

3.4.2 Programmable USB Hub

A programmable USB hub can be controlled by software to switch on or off cer-
tain port. Therefore, instead of devices being connected directly to the PC, a pro-
grammable USB hub can be used as an agent to control connections. Every mobile
device connects to the PC through the programmable USB hub and in this way, the
service in the PC will be able to stop charging a device without manually unplugging
the USB cable.

However, this solution also introduces some issues. One is the communication
channel disappears as the service tells the USB hub to switch off a connection to a
device. Consequently, the device cannot send any message back to the PC via USB
cable and the PC has no idea of when to switch on the connection again. One possible
way to deal with this is using a fixed timeout, but it is not as effective as a client-
controlled reconnect and it can be difficult to estimate an efficient timeout length.
However, it would certainly complicate the framework further. Another issue is that
a programmable USB hub could be expensive. A programmable USB hub with 8
ports would cost about 450 US dollars [1]. This is only one USB hub. It definitely
would cost more if later more and more mobile devices are added.

3.4.3 Relay-based Solution

Relay-based solution is somehow similar to using programmable USB hub. Instead
of programmable USB hub with controllable ports, relay-based solution uses relay
boards, which have relays on them. These relays could be controlled in different
ways, such as WiFi, USB cable and Ethernet. Figure 3.4.1 shows a relay board
controlled through Ethernet. Usually, these boards will come with built-in services
for relay control.

Relay boards function the same way as programmable USB hub by introducing
an extra layer between the PC and Android devices. Therefore, relay boards have the
same advantages as programmable USB hub and they are usually cheaper. Further-
more, relay boards could potentially keep the communication channel on while cutting
off power source, given USB cable is processed properly. By contrast, programmable
USB hub shuts down both power source and communication.

9



Figure 3.4.1: Ethernet relay board with four relays [13]

10



Chapter 4

Implementation

This chapter is about the implementation of the framework. The goal of the imple-
mentation is to develop a framework that satisfies the requirements listed and analysed
in Chapter 3. This chapter will describe various components of the implementation
in detail.

According to the design and analysis in Chapter 3, several key components are im-
portant for implementation. First, there are services in both Android devices and the
PC. Services in Android devices’ side are the ones the framework uses to communicate
and launch various tasks. Meanwhile, the framework also needs to provide an interface
through services in the PC for users to interact with. Second, it is also important
part of implementation how services in Android devices and the PC communicate
with each other. Several options are possible, such as designing a new communication
protocol based on TCP/IP or using an existing tool like Android Debug Bridge. In
this implementation, Android Debug Bridge is used. Lastly, control over charging and
other factors are considerably significant for energy consumption measurement and
therefore they are key part of the implementation, especially control over charging.
Therefore, two methods for control over charging are evaluated, implemented and
reported in detail. Also, control over other factors like CPU frequency and screen
brightness is described after that.

The remaining of this chapter is organised as follows. The services in both Android
devices and PC will be described first, including their functions and interaction. Then
how these services communicate will be given. After that, implementation of control
over charging and other factors will be analysed and reported in detail. Last, a
discussion will be given for the implementation’s pros and cons as well as potential
future improvements.

4.1 Components in Android devices

There are mainly three components involved in Android devices in this implemen-
tation. They are control service, log service and app under test. Originally, there
are only two components in Android devices’ side, as demonstrated in Figure 3.3.2.
However, when it comes to actual implementation, it was found that it is better to
separate the log function, which is responsible for recording relevant information dur-
ing the measurement, from the control service. Therefore, control service in Chapter
3 has a more general meaning than the one here.

App under test (AUT) is the application whose energy consumption will be mea-
surement by the framework. In principle, app under test should remain as independent

11



as possible. In other words, the framework should not have any dependency on the
app under test. However, in this implementation, code should be injected into the
app under test in order for the control service to know if the app already finishes.
Furthermore, app under test is the target that the framework deals with. Therefore,
it is regarded as important part of the framework. The code that is injected into app
under test will be demonstrated further in the next section.

Log service is responsible for recording relevant data during the measurement. It
was part of the control service in the original design, but became an independent
component when implemented. The following is a list of types of information the
service will collect during the energy consumption measurement.

1. Timestamp: Obtained from System.currentTimeMillis, it is the current
system time. The unit is milliseconds.

2. Device Name: Combination of BUILD.MANUFACTURER and BUILD.MODEL. It is
the identification for devices.

3. Android Version: It is the build version of current Android operating system,
identical to the value of Build.VERSION.RELEASE.

4. Power Source: It is the current power source of devices. The value will be one
of Battery, AC, WIRELESS, USB and UNKNOWN, and it is determined by comparing
the value of BatteryManager.EXTRA PLUGGED with these predefined values.

5. Temperature: Obtained from BatteryManager.EXTRA TEMPERATURE, it is the
current battery temperature. The value will be -1 if it is not available. The unit
is tenths of a degree in Celsius.

6. Voltage: Obtained from BatteryManager.EXTRA VOLTAGE, it is the current
battery voltage level. The value will be -1 if it is not available. The unit is
millivolts.

7. Capacity: Obtained from BatteryManager.BATTERY PROPERTY CAPACITY, it
is the current remaining battery capacity. It is an integer represented as the
percentage of total battery capacity.

8. Battery Level: It is the current battery level ranging from 0 to 1.0, calculated
by dividing BatteryManager.EXTRA LEVEL by BatteryManager.EXTRA SCALE.

9. Charge Counter: It is the current battery capacity in microampere-hours,
obtained from BatteryManager.BATTERY PROPERTY CHARGE COUNTER.

10. Current Average: It is the average battery current in microamperes, obtained
from BatteryManager.BATTERY PROPERTY CURRENT AVERAGE. Positive and neg-
ative values represent net current entering and discharging respectively.

11. Current Now: It is the instantaneous battery current in microamperes, ob-
tained from BatteryManager.BATTERY PROPERTY CURRENT Now. Positive and
negative values represent net current entering and discharging respectively.

12. Energy Counter: It is the Battery remaining energy in nanowatt-hours, ob-
tained from BatteryManager.BATTERY PROPERTY ENERGY COUNTER.

13. Screen Brightness: It is the current screen backlight brightness, ranging from
0 to 255 (inclusive). The value is obtained from the system file /sys/class/

leds/lcd-backlight/brightness, but root access is needed.

12



14. CPU0-3 Frequency: It is CPU frequency in each core. The value is ob-
tained from a system file for each core. For example, frequency for CPU core
0 comes from /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq.
Root access is no needed.

All these types of information will be recorded every 250ms (4Hz), which is the max-
imum sampling frequency of the battery fuel gauge. Also, they are stored in CSV
format. Partial wake lock is acquired during the whole process of measurement to
prevent the log service from being killed by the operating system [10]. Not all these
types of information are available in every device. Special value like 0 or -1 would be
returned when a type of information is not supported by a device.

Control service is the main service running in Android devices. It is responsible
for coordinating with different components of the framework as well as controlling
some aspects of the operating system like screen brightness and CPU frequency. For
example, when a command is issued by a user, the control service will receive the
command, set up environment accordingly and run the app under test and the log
service. After the measurement completes, the control service will notify the client to
pull back the result. In the initial implementation, the only aspect controlled by the
control service is charging. The successful implementation of control over charging is
the starting point for other aspects of the environment.

4.1.1 Interaction among the components

Three main components in Android devices’ side are app under test, log service and
control service, as described above. They have their own role and function, but
they need to interact with each other as well. Therefore, interaction among these
components is important for understanding the framework.

For the control service and the log service, their relation and interaction is rel-
atively simple. The control service will start the log service at the beginning of an
energy consumption measurement and stop the log service at the end of the mea-
surement. The log service has no dependency on the control service. However, they
indeed share a common storage for collected data so that the control service is able
to let users pull back the data.

Similarly, interaction between the log service and app under test is also straight-
forward. App under test has no idea of existence of the log service while the log
service will record related information when energy consumption of the app under
test is measured.

Only relation between the control service and app under test has somewhat com-
plexity. The control service can run the app under test as simply as starting the
log service. The real problem comes from how the control service is going to know
when the app under test finishes running. The temporary solution in the initial im-
plementation is to utilise broadcasted Intent [9], which is like a message that only
some registered receivers could receive. Therefore, the control service is registered
as the receiver of an intent that will be broadcasted by the app under test after it
finishes. However, this solution requires several lines of code be injected into the app
under test for intent broadcast, which means source code of the app under test must
be accessible. Accessibility to source code would not be available in every case and
hence this solution is only temporary. It would be better to have a solution that does
not need to inject any code into the app under test.

In the initial implementation, the app under test informs the control service it has
already finished through broadcasting a special intent. This method needs to inject
few lines of code into the app under test, which is not effective. Later, it is simplified

13



by using Android APIs directly. The key method is startActivityForResult, which
will start the app under test on the top of the control service in this case. Once the
app under test finishes, a dedicated method in the control service will be invoked and
hence control is transferred back to the control service. In this way, there is no need
to hack the app under test and inject code into it.

4.2 Command line tool for users

For the user interface of this framework in this version of implementation, an inter-
active command line tool is implemented. The interactive command line is based on
Node.js, which is a Javascript runtime built on Chrome’s V8 JavaScript engine. It is
selected mainly because of its popularity and simplicity. Also, it has a third-party li-
brary called adbkit which supports Android Debug Bridge directly. The effectiveness
of adbkit has already been demonstrated as a core library of the open source project
Smartphone Test Farm, which enable control and management of smartphones in
browser. Another important third-party library is vorpal, on which the interactive
command line interface is based.

There are two commands that have been already implemented for the implemen-
tation. One is list command, which will return a list of available smartphones and
their status. Besides, users will be notified when a smartphone goes online or offline.
The other command is test command, which will deploy a app under test onto a
specified device or all devices, tell the control service in Android devices’ side to mea-
sure the energy consumption of the app and pull back results after being notified that
the results are ready.

4.3 Two-way communication

Communication between the PC and devices is a key part of this framework. As
outlined in Section 3.3, two-way communication is needed here, which means the PC
should be able to tell devices what to do and devices can notify the PC of their
status. In general, this kind of communication can be implemented via USB cable or
wirelessly. Communication through USB cable can be the simplest solution in that
connections can be established easily while wireless communication might need more
manual steps to connect devices to the PC. From the experiments in Section 4.4.1, we
know that disabling charging programmatically does not always work. However, it is
important that the device is not charging while we are measuring energy consumption.
Therefore, the strategy is to use the programmatic method to make the framework
work basically and then add wireless communication for those devices that cannot
use the programmatic method.

4.3.1 Method

The method that used to implement communication relies on Android Debug Bridge
or ADB. It is an official command-line tool that helps communicate with a device [2].
It is most widely used for installing and debugging apps. This does also mean that it
can be used to tell a device what to do, that is the communication from the PC to a
device.

As for how to send message back to the PC from a device, the command logcat
of ADB is used. It is originally used for “Print log data to the scree” [2]. However,
through monitoring the output of logcat and filtering out useless information, one can

14



also get messages from a particular application in a device. This makes it possible for
a device to notify the PC of its status.

There are three major advantages of using ADB for communication. Firstly, ADB
supports operations such as installing and running an application natively. These
operations are also needed by the framework to deploy an application into a device
before starting measuring energy consumption. Secondly, ADB helps handle the low-
level connection. From user’s perspective, once connection is established through
ADB, we do not need to care about how messages are sent or obtained so that
the framework can focus on how to handle these messages. Finally, ADB supports
wireless mode. As mentioned above, wireless connection can be very useful when
programmatic method to disable charging is not available. Sooner or later, more
than one method will be used to deal with the restriction proposed in Section 3.3.
Moreover, the use of ADB in wireless mode is the same as USB mode.

4.4 Control over charging

This chapter reports about the implementation of control over charging. In Section
3.4, three possible solutions are introduced. They have their own advantages and
disadvantages. For example, the programmatical method is the simplest one without
introducing any extra devices. However, not every Android smartphone support this
method and root access is needed. Using programmable USB hub might be a good
candidate without the issues of the programmatical. However, programmable USB
Hub could be expensive and extra service needs to be set up for the hub to work.
Relay-based solution is somehow similar to using programmable USB hub. It usually
costs less than using programmable USB hub and has no restrictions as the program-
matical method, but it will introduces complexity and USB cables also need special
process.

Nevertheless, all the three methods are worth investigating in the actual imple-
mentation. However, due to limited time and resources, only the programmatical
method and relay-based solution are evaluated and implemented. The remaining of
this section is mainly about these two methods and their implementations.

4.4.1 Programmatical method

It is required that a device cannot be charging when measuring energy consumption of
an app in that device. Meanwhile, the device and the PC still need to communicate.
For example, the device will need to notify the PC when it finishes the measurement of
energy consumption so that the PC can deploy another measurement in that device.
Therefore, there should be a method that can stop charging a device while the PC is
still able to get message from the device.

In Section 3.3, three solutions are analysed for this issue. They all have their
pros and cons and the programmatical one would be the simplest if it could work in
every device. Although it is impossible to test every existing device, experiments can
certainly be conducted to test devices I have.

Method

The method used to stop charging is by modifying a file in Android OS. The file’s
path is /sys/class/power_supply/battery/charging_enabled. This file contains
1 or 0, which means “enable charging” and “disable charging” respectively. Therefore,
when a device is connecting to a power source, changing the file’s content to 0 could

15



possibly stop charging. However, modifying this file needs root access. That is why
a device should be rooted first before this method can be potentially effective in that
device.

General Rooting Process

As mentioned above, Android devices must be rooted for using the programmatic
method to stop charging. Therefore, I tried to root every device I have in order
to test if this programmatic method can be applied. The rooting process varies in
different devices and different versions of Android system, but a series of common
steps can still be summarised as follows:

1. Unlock bootloader. A bootloader is responsible for loading and starting up the
operating system, which is Android OS in this project. Manufacturers usually
“lock” the bootloader so that it cannot be modified and users have to stick
to the original Android OS. In the next step, a custom recovery needs to be
flashed for rooting, which requires the bootloader to be unlocked. Therefore,
unlocking bootloader is the very first step. Google shall give the steps to unlock
bootloader for most devices in few minutes, although some devices’ bootloader
cannot be unlocked.

2. Flash TWRP. TWRP is a custom recovery for Android phones [22]. It can be
used to install custom ROMs as well as root devices. To flash TWRP, the first
thing is to download the specific TWRP image from the official website for the
device to be rooted. Then, the device should be rebooted into fastboot mode
and use “fastboot” command to flash the custom recovery.

3. Install Magisk. After TWRP recovery has been ready, one can enter the TWRP
recovery mode to install SuperSU or Magisk to root the device. Both of them
should work well and Magisk is used for this project. After this, apps in the
device should have root access.

The above three steps are common for rooting Android phones. However, details
of each step usually vary across different devices and Android versions. Also, there
will extra steps for specific devices and Android versions. For example, only one
command is needed to unlock the bootloader of Nexus 6 while the official guide
should be followed for Moto G4 Play. It is always better to search the Internet and
investigate first before starting any step.

Validation of the method

In order to test if the method works in a device, a heavy calculation task can be
run for a while in three different conditions in the device to compare their energy
consumption. Specifically, for each device with a certain version of Android OS,
calculation of tanh function runs for 30 minutes when the device is connecting to
a AC power source, charging is disabled using the above method and the device
is unplugged. Energy-related information is being recorded while the calculation is
running. It is expected that the results should be similar when charging is disabled
using this method and the device is unplugged, and the result for connecting to an
AC power source should show the opposite trend. Figure 4.4.1 shows the test results
for the devices I have with different versions of Android OS.

For each line graph, the vertical axis represents battery level, the blue line rep-
resents the device is connecting to a AC power source, the green line represents the

16



Figure 4.4.1: Results from the tests of stopping charging programmatically

device is unplugged and the yellow represents charging is disabled by this method.
As can be seen from Figure 4.4.1, this method works in Nexus 6 and Sony F8331
with at least two different versions of Android OS as their line graphs meet expec-
tation. Although it does not work in Moto G4 Play with Android 6 and possibly in
other devices either, it provides the initial solution on which the following two-way
communication can be built.

4.4.2 Relay-based solution

The relay-based method introduces a relay board into the framework. In the case
of programmable USB hub, smartphones are connected to the PC via ports of pro-
grammable USB hub. Similarly, smartphones are connected to the PC via relays in
the relay board. However, compared with programmable USB hub, relay-based so-
lution gives more flexibility and usually costs less. The only inconvenience is USB
cable needs to be process for the relay-based solution. More specifically, the wire for
charging within USB cable, which is usually the red one, is cut and connected via
a relay in the relay board. Figure 4.4.2 shows an example of how a USB cable is
connected with a relay in a relay board.

Comparison of Relays

There are several different relay boards which mainly differs in the way of how relays
in the board are controlled. Table 4.1 compares three different relay boards from
Devantech Limited. The three relay boards are WIFI8020 [15], USB-RLY16L [14]
and ds3484 [13]. An 8-port programmable USB hub from Acroname is also put in the
table and compared with the relay-boards.

As shown in Table 4.1, WIFI8020 has the lowest price per relay/port. It also
provide built-in services for controlling relays. As long as devices and the server are
in the same network as WIFI8020, they have access to the built-in services. This
is the same with ds3484, but ds3484 seems to have more functions than WIFI8020
after going through ds3484 document quickly. Meanwhile, the price of ds3484 almost
doubles compared with WIFI8020. USB-RLY16L and Acroname Programmable USB
3.0 Hub are almost the same, except their price. Both of them need a service to be

17



Figure 4.4.2: Example of a USB cable being connected with a relay in a relay board

Name WIFI8020 USB-RLY16L ds3484 Acroname Hub
Control WiFi USB Ethernet USB

Price(Euro) 135.29 62.39 59.94 387.47
Number of relay/port 20 8 4 8
Price per relay/port 6.76 7.80 14.99 48.43

Setup
connected to

the same network
need a service

in the PC
connected

through cable
need a service
in the server

Table 4.1: Comparison of three relay boards and a programmable USB hub

set up in the server, which means demanding more time for developing and testing.
Considering pros and cons of the different relay boards, WIFI8020 is selected for this
version of implementation.

Using the WiFi-based relay board

Switching on/off a relay in the WiFi-based relay board, WIFI8020, is fairly sim-
ple, given devices are connected to the same network as the board. According to
WIFI8020’s technical document [15], there are several options for controlling the re-
lays. For this implementation, control through HTML commands is used, mostly
because this way is the simplest when it comes to coding. For example, if the relay
board’s IP address is 192.168.0.200 and the number of a relay to be controlled is
2, only a HTTP GET request being sent to the following two URL addresses is enough
to activate or deactivate the relay respectively. The number at the end of each URL
address represents how long the relay will be activated or deactivated for. It is ten
seconds in the examples and zero means no time limit. Figure 4.4.3 shows two smart-
phones are being connected with the relay board.

18



192.168.0.200/io.cgi?DOA2=10

192.168.0.200/io.cgi?DOI2=10

Figure 4.4.3: Two smartphones being connected with the relay board

4.5 Control over other factors

Besides charging, there are another four aspects of the Android operating system that
can be controlled. They are screen brightness, CPU frequency, airplane mode and
WiFi. Control over airplane mode and WiFi is relatively simpler than screen bright-
ness and CPU frequency. After relevant permissions are declared in the manifest file,
airplane mode and WiFi can be controlled directly through Android APIs. There-
fore, the remaining of this part will be focused on methods for control over screen
brightness and CPU frequency. Root access is needed for controlling both factors.

Screen Brightness. There are two files related to screen brightness in the op-
erating system, which are /sys/class/leds/lcd-backlight/max_brightness and
/sys/class/leds/lcd-backlight/brightness. The two files both contain only one
integer value ranging from 0 to 255 inclusive. As can be seen from the file names,
one file is for setting the maximum brightness and the other one reflects the current
brightness. Therefore, in order to change the screen brightness, both files should be
changed. If the file of maximum brightness is not changed, the screen brightness could
still be changed by the operating system.

CPU Frequency. Since CPU in current smartphones normally has multiple
cores, steps for changing the frequency is applied in core level not whole CPU level.
Take one CPU core cpu0 for example. The following steps will set the core’s frequency
to 1728000.

echo "userspace" > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

su cat /sys/devices/system/cpu/cpu0/cpufreq/ scaling_available_frequencies

su stop mpdecision

su echo 1728000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_min_freq

su echo 1728000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq

su echo 1728000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

Other cores’ frequency can be changed in a similar way.

19



All these factors will be controlled accordingly by the framework before launching
target app for measurement, as part of environment setup. During the whole process
of energy consumption measurement, the framework will also make sure these factors
remain unchanged. At the end, the framework will restore these factors to a proper
status after the measurement finishes.

4.6 Discussion

Currently, the framework can measure energy consumption of an app in multiple An-
droid devices with a user issuing one command. More specifically, a user can interact
with the framework to list all connected devices and specify all or one device to run
measurement task. The framework then can launch several services in the specified
devices to measure energy consumption of the app under test. After that, the frame-
work will return measurement results to the user. Basically, the framework satisfies
the user stories and requirements listed at the beginning of Chapter 3. Also, it proves
the possibility of automating the whole process of energy consumption measurement
in Android devices.

However, the framework is still at its early stage and more like a prototype cur-
rently. Firstly, the framework is not robust enough. It is mostly tested in experimental
not practical scenarios. Better error handling should be implemented for this pur-
pose. Secondly, the functionality of the framework is not complete. Features like
scheduling multiple measurement jobs are planned but not yet implemented. Also,
the information returned for each device’s status is still limited and more detailed
information are needed to have a better knowledge of each device. Finally, the user
interface is restricted to command line currently. Potential extension to this could be
GUI or plugin of IDEs, which would make the framework more user-friendly.

In summary, the framework can work in a basic way, however, improvements are
needed to make the framework more robust, capable and user-friendly.

20



Chapter 5

A Case Study

This chapter is an energy-related case study by using the framework for data col-
lection. There are two benefits from conducting this case study. One is testing the
framework in practice. Before the case study, only dummy applications are used for
testing. The other benefit is identifying potential future improvements through the
case study. Required features for the framework are mostly identified from previous
work and analysis of relevant experiments. A practical case study might give more
insights into that.

5.1 Statement of the problem

When comparing two variants of a target app by their energy consumption, multiple
runs are usually needed due to various sources of noise. For example, Figure 5.1.1
shows multiple energy consumption measurements for a specific app. As can be seen
from the figure, the overall trend is increasing rather than horizontal. Also, an unusual
increase can be observed at the end of the figure. These are examples showing how
noisy energy consumption measurement can be. Ideally, more runs will make it more
confident to determine which variant is better. However, it is impossible to run too
many times due to limited resources and time. Therefore, one question is how many
runs are needed for each variant to be significant enough when comparing two variants
by their energy consumption.

5.2 Experiment

The experiments are conducted by running variants of target apps in an Android
device and measuring their energy consumption. The device used in the experiments
is Nexus 6 with Android version 7.1.1. Each experiment can be divided into three
stages. The first stage is environment preparation. During this stage, the framework
will automatically set up the environment for latter energy consumption measurement.
For our specific experiments, the device’s screen brightness is set to 0, its airplane
mode is turned on and its CPU frequency is set to 1728000Hz. The second stage is
energy consumption measurement of the target. Two components are launched by
the framework in this stage, which are log service and app under test respectively.
For the experiments here, the data is collected as the app under test runs repeatedly
from 100% to 10% battery level. In order to reduce the influence of energy-saving
technology potentially launched by the operating system, data is not collected for

21



Figure 5.1.1: Multiple energy consumption measurements for a specific app in an
Android device. (Conditions remain unchanged during all measurements.)

battery level ranging from 10% to 0%. The third stage is restoring stage, where the
device’s screen is turned on, the device is recharged and the data is fetched.

There are three target app, busy loop, NOP and rebound. The busy loop app
uses an infinite loop to keep the app busy for a specified period of time. The NOP
app uses Thread.sleep() to let the app idle for a specified period of time. For these
two target apps, different periods of time are regarded as variants.

The rebound app comes from experiments of Bokhari et al. [5], where the Rebound
library is optimised for energy minimisation. For the experiments here, each run of the
rebound app executes all test cases of Spring class in the library for five times. Eight
configurations from Bokhari et al. [5] are used to generate variants of the rebound
app. Configuration R0 corresponds to the original configuration of Rebound library;
configuration R1 to R3 come from experiments where fitness function is fed by the
battery fuel gauge; configuration R4 to R5 are from Jiffy model experiment, where
fitness function is computed using energy vs. Jiffy model; configuration R6 to R7 are
from LOC experiment, where energy is estimated using the line of code.

5.3 Data analysis

This section analyses the data collected in the experiments. Through comparing the
data, we can obtain some preliminary insights into the problem.

Busy loop and NOP app

Busy loop and NOP are somehow similar. They are compared and analysed together
in this part to get some insights into the minimum number required for distinguishing
their variants. Figure 5.3.1 shows three pairs of busy loop’s variants with increasing
amount of energy consumption difference. Three columns of the figure are analysis
of the three pairs respectively. In each scatter plot of the first row, it visualises the
raw data from two variants. Each dot corresponds to a sample of energy consumption

22



measured in each run of that variant. All samples are plotted as the order of appear-
ance in log file. For each pair of two variants, we want to know how many samples
we need in order to distinguish the two variants. In each of the second row’s plots,
we use statistical test to calculate p values with different starting points of every data
file and different numbers of samples. The statistical test is Mann-Whitney rank test
[16], which is a nonparametric test and can be used to determine if two independent
samples come from the same distribution. Lower p value means it is more statistically
significant that the variant represented by blue dots consume less energy than the one
represented by orange dots. Samples for the statistical test are selected from different
starting points, including 0%, 20%, 40%, 60% and 80%. The number of selected sam-
ples ranges from 0 to 100. In each bar chart of the third row, it shows the minimum
number of samples that are needed to distinguish two variants statistically. In other
words, we want to know since when that all the p values afterwards are less than
some specified p values.

By comparing three columns of Figure 5.3.1 horizontally, we can see that it is
easier to distinguish two variants as the gap of energy consumption of two variants
gets larger. More specifically, it becomes easier to tell the difference between two
variants visually from left to right column. This is then verified statistically that can
be seen from the second and third rows.

Figure 5.3.1: Comparing variants of busy loop app with increasing amount of differ-
ence between running periods. (Value zero in bar charts means data is unavailable
for that item.)

Similar results can be observed from NOP app, as shown in Figure 5.3.2, which
is plotted in the same way as Figure 5.3.1. The second and third columns compare

23



two pairs of variants from NOP app with different gaps of runtime. The comparison
shows a similar result as busy loop app, that is as the gap gets larger it is easier
to distinguish two variants. Another thing shown in Figure 5.3.2 is that with the
same difference of runtime it is relatively easier for busy loop app to distinguish two
variants than for NOP app. One possible reason could be that busy loop app is more
computationally intensive than NOP app and therefore busy loop app is less sensitive
to noise from the system than NOP app.

As can be seen in the second column of Figure 5.3.2, it is almost impossible to
distinguish two variants of NOP app with 250ms difference of runtime. However, if the
runtime of the two variants is doubled, they become more distinguishable again. This
can be observed from Figure 5.3.3. The reason could be that noise from the operating
system is relatively constant and longer runtime makes it harder to be influenced by
the noise.

Figure 5.3.2: Comparing NOP and busy loop apps with the same difference of run
time.(Value zero in bar charts means data is unavailable for that item.)

Rebound library

This part compares variants of Rebound library and analyses the required number
of samples that are needed to distinguish two variants significantly. Figure 5.3.4
compares original configuration of Rebound library with other seven configurations in
a similar way to the ones of busy loop and NOP apps. Raw data of pairs of variants is
plotted in the first column. The second and third columns show statistical results of

24



Figure 5.3.3: Comparing variants of nop app with run time doubled.

comparisons. Similarly, it can be observed that required number of samples decreases
as difference of energy consumption between two variants gets larger.

Another observation from Figure 5.3.4 is that 40% might be the best starting point
for comparing two variants. As busy loop and NOP apps, data collected around batter
level of 10% is not reliable since uncertainty of the operating system and its energy-
saving technology. Also, from the last few rows of Figure 5.3.4, it can be observed that
data overlaps at the beginning of each variant’s measurement. Therefore, beginning
and ending part of each data file might not be good choices.

For verifying that starting point with 40% is better than others, extra analysis
is conducted upon the collected data for Rebound library. Analysis is conducted by
using rank sum test to compare each pair of the eight Rebound’s variants. Table 5.1
shows the results with starting point 0% and significance level 5%. Items in the first
row and column correspond to eight variants of Rebound library. The internal items
of the table represent the minimum number of samples needed to distinguish two
variants statistically. ‘101‘ is a special number, which means more than 100. Tables
for all combinations of starting point and significance level are listed in Appendix A.

In order to compare all combinations more easily, all tables in Appendix A are

25



Figure 5.3.4: Comparing original configuration of Rebound library with other seven
configurations.(Value zero in bar charts means data is unavailable for that item.)

26



summarised further into Table 5.2 by calculating the median value from upper-right
(diagonal excluded) part of each table. As can be seen from Table 5.2, starting
point 40% and 80% are equally best. However, samples collected at the end might be
influenced more by the device’s operating system. Also, starting from 40% will provide
more samples. From the above, starting with 40% could be the best to compare two
variants of Rebound library.

R0 R1 R2 R3 R4 R5 R6 R7

R0 101 101 3 6 6 101 57 51
R1 101 101 3 6 101 101 24 36
R2 3 3 101 3 3 3 3 3
R3 6 6 3 101 14 6 6 6
R4 6 101 3 14 101 101 6 19
R5 101 101 3 6 101 101 9 29
R6 57 24 3 6 6 9 101 100
R7 51 36 3 6 19 29 100 101

Table 5.1: Comparing eight Rebound variants in pairs with starting point 0% and
significance level 5%. (Value 101 in the table means more than 100.)

starting point
0% 20% 40% 60% 80%

significance
level

5% 7.5 4.5 3.0 4.0 3.0
1% 14.0 11.0 5.0 8.5 5.5
0.1% 32.5 14.0 9.0 11.5 8.5

Table 5.2: Minimum number of samples of different starting point and significance
level. (The numbers are medians of upper-right (diagonal excluded) part of tables in
Appendix A

5.4 Discussion

As mentioned at the beginning of this chapter, energy consumption measurement of a
specific app in an Android device can be noisy. Usually, multiple energy consumption
measurements are needed if we are going to compare two variants of a specific app.
The experiments try to find out the minimum number of measurements needed for
three target apps in order to distinguish two variants of them statistically. Some
numbers are obtained for the three target apps from the experiments. However, there
is no experiments yet to verify that these numbers are indeed enough to compare
two variants. Due to time constraints, this kind of experiments is not conducted in
this project, but it would certainly be a focus of future work. Also, more similar
experiments could be conducted across a variety of target apps, devices and Android
versions. Although the diversity of Android platform makes it impossible to examine
every combination, it would still be very helpful and potentially give more insights if
more devices, target apps and Android versions are investigated.

27



Chapter 6

Conclusion

This research project tries to prove the whole process of energy consumption mea-
surement of a particular application in Android smartphone can be automated by
developing a prototype framework for this purpose. It started with validation of the
programmatical method for control over charging, one major part of the framework.
Experiments demonstrate that the programmatical method can be effective in some
Android devices. Therefore, it was selected as the method for controlling charging in
the initial version of the framework. After investigating the programmatical method,
major components such as control service in smartphone’s side and command line
tool in the PC are implemented and added into the framework.

The initial version of the framework aims to make sure all components of the
framework can work together and interact with each other properly. Its function-
ality is very limited and every component only achieves its minimum requirement.
For example, there are few commands implemented for users to interact with the
framework. Also, this version has two significant issues. For setting up environment,
only control over charging is implemented through the programmatical method. Even
worse, the programmatical method is not always effective in smartphone and root ac-
cess is needed for this method. Another issue is in order for the framework to work
properly, some code should be injected into app under test to notify the framework
when the app finishes. These two issues were addressed in the subsequent version of
the framework.

The relay-based version of the framework improves over the initial version. The
improvements include implementation of control over more environmental factors,
relay-based control over charging and alternative way of interaction between control
service and app under test. In this version, the framework can control CPU frequency,
screen brightness, WiFi connection and airplane mode. Root access is still need for
changing CPU frequency and screen brightness. For control over charging, relay-
based solution is used. More specifically, a WiFi-based relay board is introduced into
the framework. Smartphones then are connected via the relay board to the PC. In
this solution, no root access is needed and it will work for almost every smartphone.
Also, there is no need to inject some code into app under test in this version of the
framework. To put it simply, native APIs are used directly to enable notification of
end of running.

As of now, the framework can deploy an app under test into multiple Android
smartphones, configure several environment factors and measure energy consumption
of the app under test. A case study is used to show that the framework works
in practical scenario. However, the framework is still a prototype and at its early

28



stage. Due to limited time, some planned features do not have chance to be added,
such as integration with IDE and more comprehensive information for smartphones’
status. These planned but never implemented features, coupled with other features
like schedule of jobs and restoring from errors, will definitely be the direction for
future work. It is to be hoped that these and more features will be implemented in
the framework and the framework can help researchers and developers in practice.

29



Bibliography

[1] I. Acroname. Programmable industrial usb 3.0 hub (8 ports), 2018. Accessed on
17 May 2018.

[2] Android. Android debug bridge, 2018. Accessed on 17 May 2018.

[3] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury. Detecting
energy bugs and hotspots in mobile apps. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
pages 588–598. ACM, 2014.

[4] M. Bokhari and M. Wagner. Optimising energy consumption heuristically on
android mobile phones. In Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference Companion, pages 1139–1140. ACM, 2016.

[5] M. A. Bokhari, B. R. Bruce, B. Alexander, and M. Wagner. Deep parameter
optimisation on android smartphones for energy minimisation: a tale of woe and
a proof-of-concept. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pages 1501–1508. ACM, 2017.

[6] CyberAgent. Smartphone test farm. https://openstf.io/, 2018.

[7] Facebook. Rebound. http://facebook.github.io/rebound/. Accessed on 16
October 2018.

[8] Google. Batterymanager. https://developer.android.com/reference/

android/os/BatteryManager. Accessed on 15 October 2018.

[9] Google. Intent. https://developer.android.com/reference/android/

content/Intent. Accessed on 15 October 2018.

[10] Google. Keep the device awake. https://developer.android.com/training/

scheduling/wakelock. Accessed on 15 October 2018.

[11] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell, and S. Ro-
mansky. Greenminer: A hardware based mining software repositories software
energy consumption framework. In Proceedings of the 11th Working Conference
on Mining Software Repositories, pages 12–21. ACM, 2014.

[12] M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, and S. Tarkoma. Model-
ing, profiling, and debugging the energy consumption of mobile devices. ACM
Computing Surveys (CSUR), 48(3):39, 2016.

[13] D. Limited. Ethernet relay. https://robot-electronics.co.uk/products/

relay-modules/ethernet-relay/ds3484.html, 2018. Accessed on 15 October
2018.

30



[14] D. Limited. Usb-rly16l - 8 x 16a latching relay. http://www.

robot-electronics.co.uk/usb-rly16l-8-x-16a-latching-relay-module.

html, 2018. Accessed on 15 October 2018.

[15] D. Limited. Wifi8020 - 20 x 16a wifi relay. http://www.robot-electronics.co.
uk/wifi8020-20-x-16a-relay-module.html, 2018. Accessed on 15 October
2018.

[16] H. B. Mann and D. R. Whitney. On a test of whether one of two random
variables is stochastically larger than the other. The annals of mathematical
statistics, pages 50–60, 1947.

[17] K. Mao, M. Harman, and Y. Jia. Sapienz: Multi-objective automated testing
for android applications. In Proceedings of the 25th International Symposium on
Software Testing and Analysis, pages 94–105. ACM, 2016.

[18] C. Pang, A. Hindle, B. Adams, and A. E. Hassan. What do programmers know
about software energy consumption? IEEE Software, 33(3):83–89, 2016.

[19] A. Pathak, Y. C. Hu, and M. Zhang. Bootstrapping energy debugging on smart-
phones: a first look at energy bugs in mobile devices. In Proceedings of the 10th
ACM Workshop on Hot Topics in Networks, page 5. ACM, 2011.

[20] L. Rainie. Two-thirds of young adults and those with higher income are smart-
phone owners. Race/ethnicity, 65(830):11, 2012.

[21] Statista. Android version market share distribution among smartphone owners
as of september 2017, 2017. Accessed on 14 March 2018.

[22] T. TWRP. About, 2018. Accessed on 17 May 2018.

[23] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L. Yang.
Accurate online power estimation and automatic battery behavior based power
model generation for smartphones. In Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software codesign and system synthesis,
pages 105–114. ACM, 2010.

[24] L. Zhong and N. K. Jha. Graphical user interface energy characterization
for handheld computers. In Proceedings of the 2003 international conference
on Compilers, architecture and synthesis for embedded systems, pages 232–242.
ACM, 2003.

31



Appendices

32



Appendix A

List of pairwise statistical test
of Rebound library’s variants

R0 R1 R2 R3 R4 R5 R6 R7

R0 101 101 3 6 6 101 57 51
R1 101 101 3 6 101 101 24 36
R2 3 3 101 3 3 3 3 3
R3 6 6 3 101 14 6 6 6
R4 6 101 3 14 101 101 6 19
R5 101 101 3 6 101 101 9 29
R6 57 24 3 6 6 9 101 100
R7 51 36 3 6 19 29 100 101

Table A.1: Comparing eight Rebound variants in pairs with starting point 0% and
significance level 5%. (Value 101 in the table means more than 100.)

R0 R1 R2 R3 R4 R5 R6 R7

R0 101 101 3 6 6 101 57 51
R1 101 101 5 8 8 101 71 58
R2 101 101 5 9 101 101 33 43
R3 5 5 101 5 5 5 5 5
R4 8 9 5 101 18 10 8 10
R5 8 101 5 18 101 101 8 26
R6 101 101 5 10 101 101 24 35
R7 71 33 5 8 8 24 101 101

Table A.2: Comparing eight Rebound variants in pairs with starting point 0% and
significance level 1%. (Value 101 in the table means more than 100.)

33



R0 R1 R2 R3 R4 R5 R6 R7

R0 101 101 8 11 101 101 101 69
R1 101 101 8 13 101 101 53 55
R2 8 8 101 8 8 8 8 8
R3 11 13 8 101 101 14 11 13
R4 101 101 8 101 101 101 19 35
R5 101 101 8 14 101 101 30 44
R6 101 53 8 11 19 30 101 101
R7 69 55 8 13 35 44 101 101

Table A.3: Comparing eight Rebound variants in pairs with starting point 0% and
significance level 0.1%. (Value 101 in the table means more than 100.)

R0 R1 R2 R3 R4 R5 R6 R7

R0 101 36 3 10 101 74 17 10
R1 36 101 3 101 65 27 3 3
R2 3 3 101 3 3 3 3 3
R3 10 101 3 101 65 6 3 3
R4 101 65 3 65 101 18 3 3
R5 74 27 3 6 18 101 9 3
R6 17 3 3 3 3 9 101 81
R7 10 3 3 3 3 3 81 101

Table A.4: Comparing eight Rebound variants in pairs with starting point 20% and
significance level 5%. (Value 101 in the table means more than 100.)

R0 R1 R2 R3 R4 R5 R6 R7

R0 101 42 5 42 101 88 20 12
R1 42 101 5 101 79 35 11 5
R2 5 5 101 5 5 5 5 5
R3 42 101 5 101 78 15 5 5
R4 101 79 5 78 101 101 5 5
R5 88 35 5 15 101 101 11 7
R6 20 11 5 5 5 11 101 101
R7 12 5 5 5 5 7 101 101

Table A.5: Comparing eight Rebound variants in pairs with starting point 20% and
significance level 1%. (Value 101 in the table means more than 100.)

R0 R1 R2 R3 R4 R5 R6 R7

R0 101 101 8 60 101 101 23 16
R1 101 101 8 101 101 39 13 10
R2 8 8 101 8 8 8 8 8
R3 60 101 8 101 92 41 9 8
R4 101 101 8 92 101 101 9 8
R5 101 39 8 41 101 101 15 10
R6 23 13 8 9 9 15 101 101
R7 16 10 8 8 8 10 101 101

Table A.6: Comparing eight Rebound variants in pairs with starting point 20% and
significance level 0.1%. (Value 101 in the table means more than 100.)

34



R0 R1 R2 R3 R4 R5 R6 R7

R0 101 101 3 101 8 7 3 3
R1 101 101 3 101 10 9 3 3
R2 3 3 101 3 3 3 3 3
R3 101 101 3 101 3 3 3 3
R4 8 10 3 3 101 101 4 3
R5 7 9 3 3 101 101 5 3
R6 3 3 3 3 4 5 101 7
R7 3 3 3 3 3 3 7 101

Table A.7: Comparing eight Rebound variants in pairs with starting point 40% and
significance level 5%. (Value 101 in the table means more than 100.)

R0 R1 R2 R3 R4 R5 R6 R7

R0 101 101 5 101 11 9 5 5
R1 101 101 5 101 12 10 5 5
R2 5 5 101 5 5 5 5 5
R3 101 101 5 101 6 7 5 5
R4 11 12 5 6 101 101 6 5
R5 9 10 5 7 101 101 98 5
R6 5 5 5 5 6 98 101 9
R7 5 5 5 5 5 5 9 101

Table A.8: Comparing eight Rebound variants in pairs with starting point 40% and
significance level 1%. (Value 101 in the table means more than 100.)

R0 R1 R2 R3 R4 R5 R6 R7

R0 101 101 8 101 13 12 8 8
R1 101 101 8 101 17 13 8 8
R2 8 8 101 8 8 8 8 8
R3 101 101 8 101 11 10 8 8
R4 13 17 8 11 101 101 85 9
R5 12 13 8 10 101 101 101 9
R6 8 8 8 8 85 101 101 27
R7 8 8 8 8 9 9 27 101

Table A.9: Comparing eight Rebound variants in pairs with starting point 40% and
significance level 0.1%. (Value 101 in the table means more than 100.)

R0 R1 R2 R3 R4 R5 R6 R7

R0 101 101 3 101 3 3 3 3
R1 101 101 3 101 7 7 7 7
R2 3 3 101 3 3 3 3 3
R3 101 101 3 101 8 3 3 3
R4 3 7 3 8 101 101 101 5
R5 3 7 3 3 101 101 101 9
R6 3 7 3 3 101 101 101 10
R7 3 7 3 3 5 9 10 101

Table A.10: Comparing eight Rebound variants in pairs with starting point 60% and
significance level 5%. (Value 101 in the table means more than 100.)

35



R0 R1 R2 R3 R4 R5 R6 R7

R0 101 101 5 101 5 6 5 5
R1 101 101 5 101 9 9 9 9
R2 5 5 101 5 5 5 5 5
R3 101 101 5 101 9 9 5 5
R4 5 9 5 9 101 101 101 8
R5 6 9 5 9 101 101 101 10
R6 5 9 5 5 101 101 101 16
R7 5 9 5 5 8 10 16 101

Table A.11: Comparing eight Rebound variants in pairs with starting point 60% and
significance level 1%. (Value 101 in the table means more than 100.)

R0 R1 R2 R3 R4 R5 R6 R7

R0 101 101 8 101 8 9 8 8
R1 101 101 8 101 11 13 12 12
R2 8 8 101 8 8 8 8 8
R3 101 101 8 101 12 14 9 8
R4 8 11 8 12 101 101 101 15
R5 9 13 8 14 101 101 101 14
R6 8 12 8 9 101 101 101 24
R7 8 12 8 8 15 14 24 101

Table A.12: Comparing eight Rebound variants in pairs with starting point 60% and
significance level 0.1%. (Value 101 in the table means more than 100.)

R0 R1 R2 R3 R4 R5 R6 R7

R0 101 101 3 21 4 4 3 3
R1 101 101 3 17 3 3 3 3
R2 3 3 101 3 3 3 3 3
R3 21 17 3 101 3 5 3 3
R4 4 3 3 3 101 101 101 7
R5 4 3 3 5 101 101 101 8
R6 3 3 3 3 101 101 101 7
R7 3 3 3 3 7 8 7 101

Table A.13: Comparing eight Rebound variants in pairs with starting point 80% and
significance level 5%. (Value 101 in the table means more than 100.)

R0 R1 R2 R3 R4 R5 R6 R7

R0 101 101 5 41 6 6 5 5
R1 101 101 5 28 5 5 5 5
R2 5 5 101 5 5 5 5 5
R3 41 28 5 101 7 7 7 5
R4 6 5 5 7 101 101 101 9
R5 6 5 5 7 101 101 101 9
R6 5 5 5 7 101 101 101 15
R7 5 5 5 5 9 9 15 101

Table A.14: Comparing eight Rebound variants in pairs with starting point 80% and
significance level 1%. (Value 101 in the table means more than 100.)

36



R0 R1 R2 R3 R4 R5 R6 R7

R0 101 101 8 101 9 9 8 8
R1 101 101 8 95 8 8 8 8
R2 8 8 101 8 8 8 8 8
R3 101 95 8 101 11 15 9 8
R4 9 8 8 11 101 101 101 17
R5 9 8 8 15 101 101 101 14
R6 8 8 8 9 101 101 101 18
R7 8 8 8 8 17 14 18 101

Table A.15: Comparing eight Rebound variants in pairs with starting point 80% and
significance level 0.1%. (Value 101 in the table means more than 100.)

37




