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Abstract

A commonly used strategy for improving optimization algo-
rithms is to restart the algorithm when it is believed to be
trapped in an inferior part of the search space. Building on
the recent success of BET-AND-RUN approaches for restarted
local search solvers, we introduce a more generic version that
makes use of performance prediction. It is our goal to obtain
the best possible results within a given time budget t using
a given black-box optimization algorithm. If no prior knowl-
edge about problem features and algorithm behavior is avail-
able, the question about how to use the time budget most ef-
ficiently arises. We first start k ≥ 1 independent runs of the
algorithm during an initialization budget t1 < t, pause these
runs, then apply a decision maker D to choose 1 ≤ m < k
runs from them (consuming t2 ≥ 0 time units in doing so),
and then continue these runs for the remaining t3 = t−t1−t2
time units. In previous BET-AND-RUN strategies, the deci-
sion maker D = currentBest would simply select the run
with the best-so-far results at negligible time. We propose us-
ing more advanced methods to discriminate between “good”
and “bad” sample runs with the goal of increasing the cor-
relation of the chosen run with the a-posteriori best one. In
over 78 million experiments, we test different approaches to
predict which run may yield the best results if granted the re-
maining budget. We show (1) that the currentBest method is
indeed a very reliable and robust baseline approach, and (2)
that our approach can yield better results than the previous
methods.

Introduction
Optimization algorithms are widely used in a variety of do-
mains, such as production scheduling and planning or ve-
hicle routing. In many such practical applications, the total
time budget t available for optimization is limited to at most
a few minutes. The goal is to find a solution which is as-
good-as-possible within this budget. One method to do so is
to develop better optimization algorithms. Another method
is to make the best use of an existing solver.

There are two straightforward methods when approach-
ing an optimization problem with one algorithm and a total
time budget t: One can either assign the whole budget t to a
single run of the algorithm or execute k independent restarts
of the algorithm (Martı́ 2003; Lourenço, Martin, and Stützle
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Figure 1: Our generic BET-AND-RUN strategy receives a total time
budget t. It starts k independent runs and pauses them after time t1.
A decision maker D then takes time t2 to decide which of them to
continue. All but the m chosen runs are terminated (marked with

). The m chosen runs (marked with ) continue for a total of t3.

2010) and therefore divide the budget t into k equally-sized
chunks. It can be expected that the former strategy is the best
for small budgets while the latter one is the better choice for
large budgets. Budgets t of a few minutes, however, fall in
neither category for many problem types, which, of course,
depends on the instance and the solver.

Here, BET-AND-RUN strategies (Fischetti and Monaci
2014) pose a compromise by using an initialization time
budget 0 ≤ t1 ≤ t which is divided evenly amongst k in-
dependent runs. The run with the best-so-far solution is then
continued for the remaining t − t1 time units. (Friedrich,
Kötzing, and Wagner 2017) showed that this simple ap-
proach can routinely outperform the two budgeting ap-
proaches above. Yet, it makes only use of a single unit of
information per run for the “decision” which of the k runs to
resume, namely the solution quality they reached at the end
of their respective initialization budgets.

In order to investigate the question Can we do better than
that?, we generalize the BET-AND-RUN concept as illus-
trated in Figure 1: The budget t is divided into three pieces,
i.e., t = t1 + t2 + t3 and used as follows.
Phase 1 The initialization budget t1 is divided among a set

of k initial, independent runs according to a budgeting
strategy. All of these runs are paused after t1 has been
consumed.

Phase 2 Then, a decision maker D is applied which may
access the history of each run in form of (time, quality)



tuples. D will choose 1 ≤ m ≤ k of the k runs for con-
tinuation and consume an a priori unknown time t2 while
doing so.

Phase 3 The remainder t3 of the total budget t is then di-
vided evenly among the m chosen runs, which thus each
receive (t− t1 − t2)/m additional time units.

In this article, we show (1) that the currentBest method
is indeed a very reliable and robust baseline approach, and
(2) that our approach with performance prediction can yield
better results than the previous methods.

Background
In practice, stochastic search algorithms and randomized
search heuristics are frequently restarted: If a run does not
conclude within a pre-determined solution quality limit, we
restart the algorithm (Martı́ 2003; Lourenço, Martin, and
Stützle 2010). One of the advantages of this simple ap-
proach is that it helps to avoid heavy-tailed runtime dis-
tributions (Gomes et al. 2000). However, due to the added
complexity of designing an appropriate restart strategy for
a given target algorithm, the two most common techniques
used are to either restart with a certain probability at the end
of each iteration, or to employ a fixed schedule of restarts.

Some theoretical results exist on how to construct optimal
restart strategies. For example, (Luby, Sinclair, and Zuck-
erman 1993) showed that, for Las Vegas algorithms with
known run time distribution, there is an optimal stopping
time in order to minimize the expected running time. Even
if the distribution is unknown, there is a universal sequence
of running times given by (1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,. . . ),
which is the optimal restarting strategy up to constant fac-
tors. While these results can be used for every problem set-
ting, they only apply to Las Vegas algorithms.

Fewer results are known for the optimization case. A
range of practical approaches for such restart strategies is
known (Martı́ 2003; Lourenço, Martin, and Stützle 2010).
A relatively recent theoretical result is presented by (Schoe-
nauer, Teytaud, and Teytaud 2012). Several studies show the
substantial impact of the restart policy on the efficiency of
solvers for satisfiability problems (Biere and Fröhlich 2015;
Huang 2007). In this context, restarts have also been used to
learn “no-goods” during backtracking (Ciré, Kadioglu, and
Sellmann 2014).

Quite often, classical optimization algorithms are deter-
ministic and thus cannot be improved by restarts, as run time
and outcome will not change. However, their characteristics
can be subject to change. For example, (Lalla-Ruiz and Voß
2016) exploited this by using different mathematical pro-
gramming formulations so as to provide different starting
points for the solver. While many other modern optimization
algorithms also work mostly deterministically, they often
have some randomized component, for example by choos-
ing a random starting point. These initial solutions often
strongly influence the quality of the outcome and the speed
of reaching it. In our opinion, it follows quite naturally that
algorithms should be run several times.

(Fischetti and Monaci 2014) extended the classical restart
strategies to the so-called BET-AND-RUN strategy:

Phase 1 perform k runs of the algorithm for some (short)
time limit t1 ≤ t, assigning t1/k time units to each run.

Phase 2 use remaining time t3 = t− t1 to continue only the
best run from the first phase until timeout.

They experimentally studied this for mixed-integer pro-
gramming. They explicitly introduce diversity in the start-
ing conditions of the used MIP solver (IBM ILOG CPLEX)
by directly accessing internal mechanisms. For them, k = 5
performed best.

(de Perthuis de Laillevault, Doerr, and Doerr 2015) have
shown that a BET-AND-RUN strategy can also benefit
asymptotically from larger k. For the pseudo-boolean test
function ONEMAX it was proven that choosing k > 1 de-
creases the O(n log n) expected run time of the (1+1) evo-
lutionary algorithm by an additive term of Ω(

√
n).

(Lissovoi et al. 2017) investigated BET-AND-RUN for a
family of pseudo-Boolean functions, consisting of a plateau
and a slope, as an abstraction of real fitness landscapes with
promising and deceptive regions. They proved that non-
trivial k and t1 are necessary to find the global optimum
efficiently, and that the choice of t1 is linked to features of
the problem. They also provided a fixed budget analysis to
guide selection of the BET-AND-RUN parameters to maxi-
mize the solution quality.

(Friedrich, Kötzing, and Wagner 2017) investigated a
range of BET-AND-RUN strategies on the traveling salesper-
son problem and the minimum vertex cover problem. Their
best strategy performed 40 short runs in the initial phase with
a time limit that is 1% of the total time budget each, and then
it used the remaining 60% of the total time budget to con-
tinue the best run of the first phase. They investigated the use
of the universal sequence of (Luby, Sinclair, and Zuckerman
1993) as well, using various choices of t1, however, it turned
out inferior.

Building on the success of BET-AND-RUN approaches
for restarted local search solvers, (Kadioglu, Sellmann, and
Wagner 2017) introduced the idea of adaptive restart strate-
gies. Inside their approach, a learned black-box decision
procedure dynamically decides whether to continue the cur-
rent run, to continue a previous run, or to start a new
run. While their approach performed favorably, the internal
mechanisms were black-box and it remained unclear which
algorithmic components and which decisions contributed to
the success.

Note that the stream of BET-AND-RUN-related research
is related to the very mature field of multi-armed bandits.
To the best of our knowledge, however, there are no existing
works there that make use of the core ideas of BET-AND-
RUN to solve a single instance, i.e., to have an overall lim-
ited budget as well as the idea to exclusively stick to one
arm after some first exploratory phase. For example, (Gagli-
olo and Schmidhuber 2011) propose a method for allocat-
ing computation time to algorithm portfolios for solving in-
stance sets (thus working on a much higher/coarser granu-
larity), however, their approach does not carry over to our
fine-grained scenario of using partial runs for optimizing a
single instance.



Benchmarks
Here we shortly introduce the two benchmark problems and
the optimization algorithms used to solve them.

Minimum Vertex Cover Problem
Solving the minimum vertex cover problem (MVC) means
finding the smallest set of vertexes of a graph which con-
tains at least one vertex from every edge. The MVC is
one of the classical NP-hard problems with many appli-
cations (Gomes et al. 2006). It also is closely related to the
problem of finding a maximum clique (Abu-Khzam et al.
2006). The state-of-the-art algorithms for solving the MVC
comprise FASTVC (Cai 2015), NuMVC (Cai et al. 2013),
TwMVC (Cai, Lin, and Su 2015), and FastWVC (Li, Cai,
and Hou 2017).

(Kadioglu, Sellmann, and Wagner 2017) applied
FASTVC (Cai 2015) in their experiments, one of the best
algorithms for large MVC instances. FASTVC is based on
two low-complexity heuristics. The first one constructs an
initial vertex cover and the second one chooses the vertex
to be removed in each exchanging step, which involves
random draws from a set of candidates. We use the data that
(Kadioglu, Sellmann, and Wagner 2017) gathered in 10,000
independent runs on the 86 instances used by (Cai 2015).
These real-world instances are of rather large scale and
most of them are sparse, which is challenging for solvers.
The number of vertices in the instances ranges from about
1000 to over 4 million and the number of edges from about
2000 to over 56 million.

Traveling Salesperson Problem
The traveling salesperson problem (TSP) (Applegate et al.
2007; Lawler et al. 1985) is one of the most well-known
combinatorial optimization tasks. A TSP instance is de-
fined as a fully-connected graph. Each edge in the graph
has a weight, representing the distance between the two
nodes it connects. A candidate solution is a cycle that vis-
its each node in the graph exactly once and returns back
to its starting node. The objective function, subject to min-
imization, is the sum of the weights of all edges in the
tour, i.e., the total tour length. This optimization version of
the TSP is NP-hard (Gary and Johnson 1979; Gutin and
Punnen 2002). The state-of-the-art algorithms for the TSP
include EAX (Nagata and Kobayashi 2013), the Chained-
Lin-Kernighan heuristic (Applegate, Cook, and Rohe 2003;
Cook 2005), Partition Crossover (Whitley 2016), as well as
hybrid metaheuristics (Liu et al. 2015).

We use the data from (Kadioglu, Sellmann, and Wag-
ner 2017), who used the Chained-Lin-Kernighan heuris-
tic (Applegate, Cook, and Rohe 2003; Cook 2005) as TSP
solver. They applied it 10,000 times to each of the 111 sym-
metric instances from TSPLib (Reinelt 1991) and addition-
ally to the large instances ch71009, mona-lisa100k, and
usa115475. We omit instance linhp318, as no data was
available on it.

In the next sections, for the sake of readability, we will
refer to the combination of solver and problem by just using
the problem domain, i.e., TSP and MVC.

t /k=1000ms1 t-t +t /k=61000ms1 1

lo
g
(q

u
a
lit

y
)

b
e
s
t

w
o
rs

t

log(time)

initially best
best at end

MVC/socfb-Stanford3

lo
g
(q

u
a
lit

y
)

b
e
s
t

w
o
rs

t

log(time)

TSP/brd14051

initially best
best at end

t /k=1000ms1 t-t +t /k=61000ms1 1

Figure 2: k = 40 selected runs from the datasets brd14051
(TSP) and socfb-Stanford3 (MVC) for a total budget of
t = 100′000ms and an initialization budget of t1 = 40′000ms,
illustrating that the runs which are best after the initialization bud-
get (t1 = 1000ms) are not necessarily the best ones after the full
budget (colored violet, t1 + t3 = 61000ms).

BET-AND-RUN with Better Decision Makers
Our generalized BET-AND-RUN strategy can simulate a
range of existing approaches:

• The simple multi-run strategy of restarting from scratch
k times is a special case by choosing t1 = t/k and t2 =
t3 = 0.

• The single-run strategy corresponds to a multi-run method
with k = 1.

• The strategies from (Fischetti and Monaci 2014;
Friedrich, Kötzing, and Wagner 2017) and (Lissovoi et
al. 2017) are special cases by choosing m = 1 and having
t2 ≈ 0.

Our experiments detailed in the next section therefore also
cover these approaches.

Let us consider the illustrations in Figure 2. In all related
work, D = currentBest is applied, which picks one of the
runs with the current best result after initialization (cyan)
and resumes it where it was paused. Intuitively, this is a ro-
bust strategy for which t2 ≈ 0 holds, but it does not nec-
essarily pick the run which yields the best result (violet) af-
ter all budget has been exhausted. In such scenarios, paying
some time cost t2 for a more sophisticated choice can yield
a better overall result.

In our experiments, we need to use clock time as time
measure and cannot apply any other measure common in op-
timization (Weise et al. 2014) such as function evaluations
(FEs). This is because the decision makers do not evalu-
ate the objective function or generate candidate solutions by
themselves, but only process the data already collected, i.e.,
the aforementioned (time, quality) tuples. Using clock time
to measure the computational effort of both the optimization
algorithm and the decision maker has the further advantage
that we can also consider otherwise “hidden” costs, such as
for the initialization of data structures and bookkeeping.

In order to get an initial estimate on how likely such sce-
narios are, we randomly draw 1’000’000 samples of k runs
from our each of our 86 MVC and 113 TSP datasets. In Ta-
ble 1, we count how often the runs chosen by currentBest,
which were best after time t1/k, are outperformed by an-
other run after time t− t1 + t1/k.

As can be seen, at least for t = 100s and t1 = 40s, cur-
rentBest cannot be beaten in the majority of samples. Still, in



Table 1: Baseline performance of currentBest. Shown is the num-
ber (and percentage) of instances from the MVC and TSP experi-
ments where another decision maker could potentially outperform
currentBest and the estimated overall probability averaged over
all datasets. t = 100s, t1 = 40s and t2 = t3 = 0

experiment k instances mean probability
MVC 4 67 (78%) 0.11
MVC 10 52 (60%) 0.17
MVC 40 32 (37%) 0.23
TSP 4 30 (27%) 0.03
TSP 10 34 (30%) 0.06
TSP 40 44 (39%) 0.12

78% of the MVC benchmark instances, there were at least
some samples of k = 4 runs where currentBest made the
wrong choice. For k = 40, the chance to theoretically be-
ing able to outperform currentBest on a random instance
of the MVC problem is 23%. For the TSP, these chances
tend to be lower, but there is still a potential to improve the
overall performance. However, these are mean probabilities,
and the actual values can deviate significantly. For exam-
ple, for the two instances shown in Figure 2, the observed
probabilities of outperforming currentBest when varying
k ∈ {4, 10, 40} range from 0.25 to 0.93 (brd14051) and
0.01 to 0.10 (socfb-Stanford3).

A decision maker better than currentBest would need to,
e.g., outperform it in at least some of these scenarios while
not performing worse in others. Although we have con-
firmed that there exist sufficiently many scenarios where this
is potentially possible, there is another requirement which
may decrease these chances: The performance data collected
during the initialization budget t1,i of a run i must permit
making a sufficiently accurate prediction regarding the fu-
ture progress of that run. If this is true, then sophisticated
decision makers have a chance to yield better results. (Qi,
Weise, and Li 2017; 2018), for instance, showed that per-
ceptrons have good prediction accuracy in their experiments
on the Maximum Satisfiability Problem and the TSP with
simple solvers. This prediction capability should make them
suitable for determining which solution quality a run would
yield if continued for a certain amount of time. However,
other techniques, such as linear predictors, might yield im-
provements as well.

Experimental Study
Experimental Setup
To investigate the performance of our approach, and in par-
ticular to investigate the benefits of our more general BET-
AND-RUN setup, we first perform a wide scan of many dif-
ferent setups and then investigate fewer setups in more de-
tail. All datasets have been made publicly available (Weise
and Wagner 2018).

Initial Large-Scale Experiment. In the first set of exper-
iments, we limit ourselves to 20 random samples for each
benchmark dataset and setup. We cover the total budgets
t ∈ {1s, 4s, 10s, 40s, 100s, 400s}. For k ∈ {4, 10, 40} and

m ∈ {1, 2}, we test 25 different values of t1. These are auto-
matically chosen according to a heuristic based on the data
from (Kadioglu, Sellmann, and Wagner 2017) for each in-
stance before the experiment in order to maximize the num-
ber of different, meaningful outputs, e.g., the smallest val-
ues of t1 are chosen that there is at least one data point. We
briefly investigated more choices for m, but found that the
preliminary results did not look very promising while the
overall experimental time required would have more than
doubled.

For the distribution of t1 among the k initial runs, two
strategies are tested. EVEN assigns t1,i = t1/k for each
i ∈ 1..k. LUBY instead follows the Luby sequence (Luby,
Sinclair, and Zuckerman 1993) and sets t1,i = l(i), which
equals to 2z−1 if i = 2z − 1 and to i − 2z−1 + 1 other-
wise, with 2z−1 ≤ i < 2z − 1. The values of t1 are chosen
to be multiples of

∑k
i=1 l(i) for the LUBY experiments and

multiples of k for those using EVEN.
Our decision makers have access to the measured data

points collected until t1 is exhausted in the form of tuples
of (time, quality). The set of basic decision makers includes
currentBest, which picks the runs with the best quality value
in their last measured data point, random, which randomly
picks runs, and currentWorst, which picks the worst runs.
The latter two performed worse and were included as san-
ity tests only. mostImprovements simply choses the run(s) i
with the highest number of improvements (measure points)
divided by the logarithm of their consumed time t1,i in the
hope that they may be likely to attain further improvements.
logTimeSum chooses the runs for which the sum of the loga-
rithms of all time stamps at which improvements were made
are the highest.

We also propose model-based decision makers that try to
construct, for each run, a functional relationship between the
time stamps and the achieved quality. These relationships are
used to predict the quality that a run would reach if it was
selected and pick the runs with the best predicted results.

As model types we test linear, quadratic, and cubic poly-
nomials as well as perceptrons. The latter is suggested by
(Qi, Weise, and Li 2017; 2018) for modeling optimization
algorithm behavior. We apply perceptrons PER(n) with n ∈
{1, 2, 3} nodes on a single hidden layer and such just with
input/output layer (n = 0). We use either tanh or the linear
step as activation function. The parameters of the polynomi-
als can either be computed directly based on two, three, or
four data points or fitted using the Levenberg-Marquardt al-
gorithm (Levenberg 1944; Marquardt 1963) algorithm based
on last ten measured points. The parameters of the percep-
trons are obtained by either applying SepCMA-ES (Ros and
Hansen 2008) or CSA (Arnold and Beyer 2008) for at most
400 function evaluations, on the last 10 points collected in
the run. We chose 10 points only in order to limit the run-
time t2 consumed for training the perceptrons, which grows
linearly with the number of points in our setup.

For the modeling, time and quality may be either used
directly or logarithmically scaled. Furthermore, if the time
value of the last measured tuple (time, quality) is less than
t1,i, we may add a “virtual end point” (time, t1,i) to the
dataset of run i. This makes sense because an optimization
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Figure 3: Performance of the decision makers compared with a single run executed over the whole budget t, for strategy EVEN, with k = 40,
m = 1, and different values of t (diagrams) and t1 (x-axes). We display the average score over all benchmark instances of the MVC/TSP
datasets at the y-axes. For each time a setup yields a better result than the single run would have yielded, it receives a score of −1, for each
time it returns a worse solution, it yields 1 (0 for the same solution). Only the relevant of the 44 decision makers are highlighted. If the
best-performing setup was not currentBest, the diagram is marked with , if another setup scored equally good with currentBest, we mark
the diagram with .

process may first quickly trace down a local optimum and
then not improve anymore at all. In that case, no further
measure point would appear in its initial budget and sim-
ply extrapolating its initial progress while ignoring this fact
may yield wrong predictions. Finally, we test a linear model
extrapolating from the very first measured point and the “vir-
tual end point” of a run into the future.

This results in 44 decision maker setups, yielding a total
of (113 + 86) ∗ 20 ∗ 25 ∗ 6 ∗ 3 ∗ 2 ∗ 44 = 157′608′000 ex-
periments simulated on the data from (Kadioglu, Sellmann,
and Wagner 2017).

Targeted Smaller Experiment. In a second experiment
we investigate fewer, selected values of t1, which also allows
us to test additional configurations.

We investigate one additional decision maker, dimin-
ishing, which is based on the idea of diminishing re-
turns (Samuelson and Nordhaus 2001). We set ∆q =
min{0.95,∆q,1/∆q,2}, where ∆q,1 be the last improvement
in terms of quality a run has made and ∆q,2 the previous one.
We further set ∆t = max{1.05,∆t,1/∆t,2} where ∆t,1

and ∆t,2 are the corresponding required runtime. The de-
cision maker assumes that it will take longer by factor ∆t

to achieve each further improvement for the run, which, in
turn, will be smaller by factor ∆q . Improvements and times
are always discretized.

In this experiment, we set m = 1. We choose t ∈
{2s, 10s, 20s, 50s, 100s, 200s, 500s, 1000s, 2000s, 5000s}
in correspondence to (Kadioglu, Sellmann, and Wagner
2017), who used the range 50s to 500s for MVC and 100s
to 5000s for TSP. We take 1000 samples for each setup.

Results
Initial Large-Scale Experiment. An experiment of the
scale and with as many parameters as described before can-
not be discussed in full here. Our findings confirm that cur-
rentBest is a very robust basic strategy that performs the best
in many situations. We know from Table 1 that good deci-
sion makers should perform very similar to it and only some-
times can yield better results. Averaged over all benchmark
instances, it should be possible to gain an advantage of a
few percent. From Table 1 we can predict that this advan-
tage should be bigger on the MVC than on the TSP.

Indeed, in Figure 3, we can observe exactly this.1 We find
that perceptron-based decision makers work generally well
and are (slightly) more likely to most-often outperform a sin-
gle run with the full budget than currentBest on MVC for all
t1 ∈ {40s, 100s, 400s} while this only holds for t1 = 400s
on the TSP.

Larger total budgets t seem to be beneficial when the goal
is to outperform single runs or currentBest. Note that this
is a parameter which cannot be controlled by the user as it
results from application requirements.

The time t2 needed by the decision makers is generally
the highest for perceptron-based methods (influenced by the
presence and size of the hidden layer) and in the 100ms
range. If we do not consider t2 in our simulated experiments,
i.e., artificially set t2 = 0, the outcome of the experiments
stays almost the same. t2 is deducted from t3 to be used for
continuing the selected runs. It would be conceivable that

1Over all values of k, m, and strategies EVEN and LUBY, we
can observe both scenarios where currentBest is outperformed
and such where it is not. We selected figures without bias.
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stances. (see Figure 3 for definition of “score”)

using much time to make a decision could decrease t3 too
much so that the gain from better prediction is destroyed by
the loss of budget for actually attaining the gain. However,
the experiment indicates that using more complex decision
makers requiring more time t2 may be viable, e.g., using
more than the last 10 points to train our perceptrons would
have been possible.

We now analyze the impact of the budgeting strategy, i.e.,
the choices of k, m, and whether to apply the EVEN or LUBY
time distributions. Good choices of these parameters should
obviously depend on the available total budget t and the run-
time behavior of the solvers. In Figure 4 we plot the perfor-
mance of the different configurations for t = 100s, averaged
over all decision makers and for different values of t1.

Using EVEN with k = 10, m = 1 is the best choice for
the MVC t ∈ {40s, 100s} and the TSP for t ∈ {10s, 40s}.
For smaller budgets of the MVC and t = 100s on the
TSP, it makes sense to just perform k = 40 independent
restarts distributing the time according to the LUBY strategy.
This may result from the fact that the set of decision mak-
ers over which we average also contains worse performing
methods such as currentWorst and random. Continuing two
runs (m = 2) only is a good choice for the large budgets
t = 400s on both the MVC and TSP. This cost of continu-
ing a second run is only then outweighed by the benefits of
exploiting the variance of runtime performance.

Alternatives to currentBest. As shown in Table 1 and
Figure 3, it is theoretically and practically possible to out-
perform the predictor currentBest. Next, we show to which
extent and under which conditions we are able to do so given
the predictors described above.

We compare our results with the best approach from
(Friedrich, Kötzing, and Wagner 2017) (named F17 here and
used as a benchmark by us), which uses currentBest to pick
m = 1 run from k = 40 initial runs, each of which received
1% of the total time budget t, i.e., t1 = 0.4t. The purpose
of this comparison is to see whether improvements are pos-
sible, and also whether they are statistically significant.

In Figure 5, we show a qualitatively representative subset
of our results. We have chosen two extreme total time bud-
gets (a very small one of 2s and a very large one of 2’000s)
and selected a diverse set of predictors. Note that we have

chosen pie charts on purpose as they allow for a quick qual-
itative comparison of results.

It turns out that the benchmark approach dominates or is
dominated depending on the problem domain, the instances,
and the total time budget. For example, it is no surprise that
the benchmark approach can beat the single run (lots of red)
when the total time budget is large, as performance variance
can be exploited. Also, we can see that the last phase of BET-
AND-RUN, i.e. when a run is continued, is generally helpful
when the total runtime is short, as both EVEN and LUBY are
beaten significantly and often in both the MVC and TSP
case (lots of red).

For MVC and small budgets, many predictors can beat
the benchmark approach. This advantage vanishes as the to-
tal time budget increases, which is due to the algorithm’s
convergence within the used time t1/k for the individual ini-
tial runs. Consequently, performances are typically not dis-
tinguishable anymore from F17 (lots of gray), while the dif-
ferences remain statistically significant for the TSP.

When it comes to the different problem domains, it also
turns out that for MVC many predictors perform better than
the benchmark approach. For example, the diminishing ap-
proach is significantly better on 43 instances while worse
only on 24 instances; similar ratios hold for the other pre-
dictors. For the TSP and the long total time budget, how-
ever, there are a few deviations from the “usual” pie chart
in this category. Noteworthy deviations are the perceptrons
PER(0) without hidden layer and diminishing. In both cases,
the benchmark is better on only three instances (as visible
by the little red section), while being beaten on 19 instances
(shown in green).

Lastly, we briefly compare the performance of different
predictors when only 4 instead of 40 initial runs are per-
formed. The results in Figure 6 show that predictors more
elaborate than currentBest are again significantly more suc-
cessful in picking the best run for both small and large total
time budgets (lots of green and gray).

Summary and Conclusions
Over a wide variety of scenarios, we found that predicting
the future performance of the initial runs in order to select
those to continue is feasible. This means that it is possible
to discriminate between “good” and “bad” sample runs, and
to increasing the correlation of the chosen run with the a-
posteriori best one. In particular, the crude and very fast con-
cept of diminishing returns has led to surprisingly good re-
sults. Another good approach was to fit the parameters of a
perceptron to the observed data, using numerical black-box
optimizers.

The challenge here arises from the fact that the very
same algorithm on the very same instance can show signifi-
cantly different behavior with intersecting performance pro-
files (see Figure 2). These then cause difficulties in choosing
the right run to continue: depending on the total time bud-
get, this causes a switch of the best decision maker from
“currentBest” even to “currentWorst” in some cases. Theo-
retical results are needed to characterize this further in the
context of stochastic algorithms, and this will be the subject
of our future work.
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PER(0) (tanh, on log-scaled inputs, CSA) vs. F17
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Figure 5: Statistical comparison of the best BET-AND-RUN config-
uration from (Friedrich, Kötzing, and Wagner 2017) (here named
F17) with a subset of our approaches using the Wilcoxon rank-sum
test (significance level p = 0.05) on 1’000 independent samples
per setup. All decision makers are applied for k = 40, m = 1,
t1 = 0.4t, except for single run, EVEN and LUBY, which have
t1 = t. The approaches are compared based on the final quality
gap to the best possible solution. Each pair of pie charts shows the
outcomes for two extreme total time budgets: t = 2s (left) and
t = 2′000s (right).
In short, the more green we see, the better the alternative is com-
pared to F17. In detail, the colors have the following meaning:
green indicates that the alternative is statistically better than F17,
red indicates that the alternative is worse, light gray indicates that
both performed identically, dark gray indicates that the differences
were statistically insignificant.
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Figure 6: Comparison of predictors for k = 4, m = 1, t1 = 0.4t.
The style is identical to that of Figure 5. As a new reference,
F17k=4 corresponds to the previous F17 with k = 4.

To look a bit more into the future, we conjecture that per-
instance configuration of BET-AND-RUN is possible. Our
preliminary work in this direction indicates that this is in-
deed feasible, however, the very uneven heterogeneity of the
instance features in combination with the small number of
instances is currently posing a major challenge.

In further future work, we plan to relax two current re-
strictions: the approaches to date make their decisions purely
based on solution quality and also consider just a single al-
gorithm. Both aspects can be extended by giving the deci-
sion maker access to features of the solutions, and also by al-
lowing for a diverse set of solvers (or configurations thereof)
to participate in the overall optimization – with the overall
goal to better exploit performance variance of solvers.
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