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Abstract—Subjective perceptual image quality can be assessed
in lab studies by human observers. Objective image quality
assessment (IQA) refers to algorithms for estimation of the
mean subjective quality ratings. Many such methods have been
proposed, both for blind IQA in which no original reference
image is available as well as for the full-reference case. We
compared 8 state-of-the-art algorithms for blind IQA and showed
that an oracle, able to predict the best performing method for any
given input image, yields a hybrid method that could outperform
even the best single existing method by a large margin. In
this contribution we address the research question whether
established methods to learn such an oracle can improve blind
IQA. We applied AutoFolio, a state-of-the-art system that trains
an algorithm selector to choose a well-performing algorithm for a
given instance. We also trained deep neural networks to predict
the best method. Our results did not give a positive answer,
algorithm selection did not yield a significant improvement over
the single best method. Looking into the results in depth, we
observed that the noise in images may have played a role in why
our trained classifiers could not predict the oracle. This motivates
the consideration of noisiness in IQA methods, a property that
has so far not been observed and that opens up several interesting
new research questions and applications.

Index Terms—image quality assessment, algorithm selection,
machine learning, deep learning

I. INTRODUCTION

The perceptual quality of visual media is of relevance
for the development of media compression and enhancement
algorithms as well as for content providers wishing to en-
sure sufficient user satisfaction. Assessment of visual quality
requires human judges or algorithmic (“objective”) methods.
These can be trained on subjective mean opinion scores (MOS)
from benchmarks achieved by human lab assessments, or,
more recently, by larger crowdsourcing studies.

In this contribution we consider the case of blind image
quality assessment (BIQA), i.e., the estimation of subjective
perceptual image quality without availability of a pristine
reference image. There are several image quality datasets
available for training and testing BIQA methods, and a number
of algorithms have been proposed to solve the BIQA task
providing more or less accuracy. It can be expected that there
is no single method that achieves the best result, i.e., a quality
estimation nearest to the MOS, for all of the images in a test
set. Therefore, here we consider learning to predict for each
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input image the best suited IQA method out of a portfolio of
a set of candidate algorithms.

This is an instance of the general algorithm selection
problem [1]: Given a portfolio P of algorithms or methods,
a set I of problems, and a cost metric m : P × I → R,
the algorithm selection problem consists of finding a mapping
s : I → P from instances in I to algorithms in P such that the
total cost

∑
I∈I m(s(I), I) across all instances is minimized.

If I and P are finite, the single best method (SBM) is given
by M? ∈ P with M? = argminM∈P

∑
I∈I m(M, I), and

the virtual best selection model (VBM), also called the oracle,
O, is the one that selects the best algorithm in each case, so
O(I) = argminM∈P m(M, I) for all I ∈ I.

In the case of BIQA, the set of algorithms is finite, Mk ∈
P, k = 1, . . . ,K, and the instances are images from a test
set of a benchmark dataset, In ∈ I, n = 1, . . . , N , where the
image qualities have been assessed by mean opinion scores,
MOS(In). The cost function can be, e.g., the absolute error
of the BIQA method, s(I,M) = |M(I)−MOS(I)|.

It turns out that for a set of state-of-the-art BIQA algorithms
and a large-scale image quality dataset there is a very large per-
formance gap between the single and the virtual best method.
Thus, in this work we are pursuing the research question for
BIQA, whether advanced methods of algorithm selection are
able to close this gap. All our attempts, however, failed in
this regard. It seems, algorithm selection for BIQA does not
yield an improvement over the single best method. Although
negative, this result gives rise to a number of interesting new
research questions, posed at the end.

We are not aware of any previous work on algorithm
selection for blind IQA as well as for the full reference case
(FR-IQA). However, hybrid method have been proposed for
FR-IQA, combining all methods from a portfolio by linear
combinations trained by regression for the quality assessment.
In addition, images can be classified according to distortion
type and for each of these a separate method fusion can be
designed [2]. It was also proposed for FR-IQA to select and
linearly combine a subset of IQA methods, however, globally,
i.e., not adaptively for each input image [3].

II. DATA SET AND THE VIRTUAL BEST METHOD

In [4] the authors introduced a diverse dataset, called KonQ-
10k, of 10,073 natural images with authentic distortions in-
tended for machine learning BIQA methods. Currently, it is the
largest such dataset available. It is subdivided into a training
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TABLE I
PERFORMANCE OF 8 IQA METHODS ON THE KONIQ-10K TEST SET.

Method best for images
Method Features SROCC MAE Rank 1 Rank 2 Rank 3

BIQI 18 0.559 8.339 187 188 240
BLIINDS-II 24 0.585 9.239 185 215 205
BRISQUE 36 0.705 8.224 176 205 253
CORNIA 20,000 0.780 7.308 217 263 286
DIIVINE 88 0.589 8.180 169 198 259
HOSA 14,700 0.805 6.792 220 324 316
SSEQ 12 0.604 9.403 179 227 168
KonCept512 1,536 0.921 4.154 682 395 288

Virtual best method NA 0.978 2.069 2,015 0 0

set and a test set of 8,058 and 2,015 images, respectively.
Seven well-known IQA methods (BIQI, BLIINDS-II, etc.) and
a newly developed deep learning method (KonCept512) were
applied to the test set and gave results, summarized in Table I.
More details and the references for the methods can be found
in [4]. The second column of the table lists the number of
features used for each method.

We have fitted the predictions of the eight methods to the
ground truth values of the training set, which were scaled
to the interval [0, 100], by nonlinear regression, using the
5-parameter logistic function from [5]. This is a necessary
preprocessing step before algorithm selection, because IQA
methods generally are trained to give the best correlation
with ground truth rather than minimizing an average error
measure. In Table I we list the Spearman rank order correlation
coefficient (SROCC) and the mean absolute error (MAE) of
the predictions of all methods. The MAE is based on the joint
quality scale [0, 100].

After this alignment, we obtained the virtual best method
by checking for each of the 2015 test images which method
estimated its quality closest to the ground truth MOS. The
columns labeled “Rank 1, 2, 3” in Table I show the numbers
of images for which each method gave the best, the second
and the third best result. The single best method, KonCept512,
provided 682 out of 2,015 scores for the virtual best method.
This is more than three times as many as any other method,
but still only 33.8% of all test images. The virtual best
method gave an SROCC value of 0.978 and an MAE of
2.069, much better than the single best method. The correlation
diagram and scatter plots in Figure 1 show a certain degree of
complementarity of the algorithms, which, in principle, should
allow us to train an effective algorithm selector.

III. ALGORITHM SELECTION USING AUTOFOLIO

In our first attempt of algorithm selection for BIQA, we
employed AutoFolio [7]. This tool automatically determines
a well-performing algorithm selection approach and its hyper-
parameters. In its learning phase, AutoFolio takes as input two
matrices: one that lists for each training instance its instance
feature values, and the other one lists for each instance the
performance of all (eight) algorithms. AutoFolio takes these
and then explores the “algorithm selector design space”, which

Fig. 1. Left: The correlations (SROCC) between the predictions of the
8 selected methods, clustered with Ward’s hierarchical method, are shown
color coded. KonCept512’s performance across all test instances is the most
different from the other seven, while others are more related, such as CORNIA
and HOSA, and BIQI and DIIVINE. Right: Two scatter plots showing the
(signed) errors M(I) − MOS(I) for two pairs of methods. Points clustered
along the vertical axis imply that the method plotted on the horizontal axis
has smaller errors, and vice versa. So HOSA is more accurate than SSEQ,
but less than KonCept512. Figures were generated using ASAPy [6].

TABLE II
PERFORMANCE OF SINGLE BEST METHOD (SBM), VIRTUAL BEST

METHOD (VBM), AND ALGORITHM SELECTION (AS) BY AUTOFOLIO ON
THE KONIQ-10K TEST SET. THE FIRST TABLE PART SHOWS THE NUMBER

OF INSTANCES COVERED BY EACH METHOD.

Using all methods KonCept512 excluded
Method SBM VBM AS SBM VBM AS

BIQI – 187 0 – 263 51
BLIINDS-II – 185 0 – 277 32
BRISQUE – 176 0 – 256 140
CORNIA – 217 0 – 329 512
DIIVINE – 169 0 – 241 252
HOSA – 220 0 2015 363 918
SSEQ – 179 0 – 286 110
KonCept512 2015 682 2015 – – –

MAE 4.154 2.069 4.154 6.792 3.063 6.665
SROCC 0.921 0.978 0.921 0.805 0.954 0.784

includes design parameters such as different models (e.g., ran-
dom forests and XGBoost) with various parameterizations, and
preprocessing options (e.g., PCA on/off and scaling on/off).

From Table I, the total number of features is 36,414, mostly
because CORNIA, HOSA, and KonCept512 make use of many
features. To limit a possible selection bias of features by
AutoFolio and to reduce complexity, we performed a principle
component analysis for the set of features of each of the
three methods mentioned above and then selected the most
important 100 features in each case. In total, this resulted in
478 features that the eight methods contribute.

Table II lists the results of two experiments. In both,
AutoFolio was given 24 hours to explore the model space.
In the first one, we allowed it to use all eight algorithms.
Despite our and AutoFolio’s best efforts (it explored over
500 models in 24 hours), the best algorithm selector chose
KonCept512 for all of the 2015 test instances, even though
the VBM would pick it in just about 34% of all cases. Due
to KonCept512’s dominance, we excluded it in the second
experiment. The MAE of the remaining seven method’s VBM
increased to 3.063. Interestingly, AutoFolio now managed to
learn an algorithm selector that performed slightly better than
the single best method of the remaining seven algorithms.
However, this holds only for the MAE performance metric,



Fig. 2. The proposed siamese network architecture for error prediction.

and not for SROCC. Moreover, the large gap to the VBM’s
performance (i.e., when considering just these seven) has
remained.

IV. ALGORITHM SELECTION USING DEEP LEARNING

For our second attempt, a set of images with ground truth
image quality values were used and split into a subset of
training images and a smaller one for validation. We tried
two approaches using deep learning classifiers.

Approach 1: Train a CNN-based deep learning system to
classify images according to which IQA method achieves the
best image quality prediction. Thus, we consider eight classes,
one for each method. After training, this network provides a
solution to the algorithm selection problem. We have used
InceptionResNetV2 [8] for the image classification problem.
Given the training set and a validation set (1,000 images, split
from the training set), we fine-tuned InceptionResNetV2 with
the pre-trained weight on ImageNet dataset [9], where the
stochastic gradient descent optimizer was applied with a small
learning rate α = 0.0001. We trained 10 epochs with a batch
size of 64 and reported the model that gave the best prediction
results on validation set. This gave an image classification
accuracy of 29.3% and an SROCC of 0.871 on the KonIQ-10k
test set after algorithm selection.

Approach 2: For IQA methods M and images I , having
ground truth quality values MOS(I), we consider the error
function fM (I) = |M(I)−MOS(I)|. We tried to learn these
functions by a Siamese neural network with a joint CNN base
for all considered methods M . Then the algorithm selection
for a given input image would first run this network and
then output the IQA M(I) of the method M , for which the
network predicted the smallest error fM (I). The proposed
architecture is shown in Fig. 2. We feed an image into the
CNN base of InceptionResNetV2 and use Global Average
Pooling (GAP) for each feature map. The resulting feature
vector passes through 8 separate modules, each one predicting
the error for one of the eight methods. Each module consists
of five layers. These are of type fully-connected (FC) with
512 units, dropout with rate 0.25, FC with 256 units, dropout
with rate 0.5, and output with one neuron. We replaced the
cross entropy loss by mean absolute error loss and applied
the same training process as in Approach 1. The model that
gave the lowest loss on the validation set was accepted. For an

input image I it produces estimates f̂M (I) of the error fM (I)
for all methods M , leading to the algorithm selection result
M?(I) = minM∈P f̂M (I). The MAE fM?(I) on the test set
was 6.447, which gave an SROCC of 0.908.

V. DISCUSSION AND CONCLUSION

The virtual best algorithm by means of algorithm selection
from a portfolio of eight methods would yield an extreme
improvement of IQA performance over the single best one,
KonCept512 (SROCC of 0.978 versus 0.921). However, all our
attempts to apply methods of algorithm selection have failed
to achieve a performance better than that of the single best
one. Using state-of-the-art algorithm selection, the best model
came out to be equal to the best single method, KonCept512.
Moreover, both approaches to learning to identify the best
IQA method for an input image by deep neural networks gave
results on the test set that are worse than those of the single
best method (SROCCs of 0.871 and 0.908).

Our explanation is a combination of two issues. Firstly, we
conjecture that the performance of the single best algorithm,
KonCept512, is already close to being optimal, i.e., at the
saturation limit of what can be achieved for blind IQA on our
training and test sets. Secondly, we conjecture that the clear
superiority of the virtual best algorithm may be attributed to
‘noisy’ evaluation of image quality. Consider an IQA method
and a fixed test image. For this image there are numerous other
images that are perceptually indistinguishable but different in
terms of pixel RGB values. When evaluating an IQA method
on this set of visually equivalent images, we would obtain
a distribution of image quality values. So the actual quality
estimate of a particular image can be interpreted as the mean
value of all of these measurements, plus an added noise
term. In this case the virtual best method can still achieve
an improvement over the optimal method, but only due to
exploitation of noise which, of course, cannot be predicted by
any machine learning on a training set.

Therefore, our work, although providing a negative answer
to the initial question of whether algorithm selection can
improve blind image quality assessment, opens up a number of
interesting new research questions: Can one quantitatively and
reliably assess the noisiness of IQA methods? Does denoising
of IQA methods improve their performance? And finally, does
denoising remove the large gap between the single best method
and the virtual best, and are denoised IQA methods better
suited for the algorithm selection strategy?

REFERENCES

[1] J. R. Rice, “The algorithm selection problem,” in Advances in Computers.
Elsevier, 1976, vol. 15, pp. 65–118.

[2] L. Xu, W. Lin, and C.-C. J. Kuo, “Metrics fusion,” in Visual Quality
Assessment by Machine Learning, ser. SpringerBriefs in Electrical and
Computer Engineering. Springer Singapore, 2015, ch. 5, pp. 93–122.

[3] M. Oszust, “Decision fusion for image quality assessment using an
optimization approach,” IEEE Signal Processing Letters, vol. 23, no. 1,
pp. 65–69, 2016.

[4] H. Lin, V. Hosu, and D. Saupe, “KonIQ-10K: Towards an ecologically
valid and large-scale IQA database,” arXiv:1803.08489 (cs.CV), 2018.



[5] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical evaluation
of recent full reference image quality assessment algorithms,” IEEE
Transactions on Image Processing, vol. 15, no. 11, pp. 3440–3451, 2006.

[6] B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky,
A. Frechétte, H. Hoos, F. Hutter, K. Leyton-Brown, K. Tierney, and
J. Vanschoren, “Aslib: A benchmark library for algorithm selection,”
Artificial Intelligence Journal (AIJ), vol. 237, pp. 41–58, 2016.

[7] M. Lindauer, H. Hoos, F. Hutter, and T. Schaub, “Autofolio: An auto-
matically configured algorithm selector,” Journal of Artificial Intelligence
Research, vol. 53, pp. 745–778, 2015.

[8] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
Inception-ResNet and the impact of residual connections on learning.” in
AAAI Conference on Artificial Intelligence (AAAI), vol. 4, 2017, p. 12.

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2009, pp. 248–255.


	I Introduction
	II Data set and the virtual best method
	III Algorithm selection using AutoFolio
	IV Algorithm selection using deep learning
	V Discussion and Conclusion
	References

