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ABSTRACT
Evolutionary algorithms have successfully been applied to evolve
problem instances that exhibit a significant difference in perfor-
mance for a given algorithm or a pair of algorithms inter alia for the
Traveling Salesperson Problem (TSP). Creating a large variety of
instances is crucial for successful applications in the blooming field
of algorithm selection. In this paper, we introduce new and creative
mutation operators for evolving instances of the TSP. We show that
adopting those operators in an evolutionary algorithm allows for
the generation of benchmark sets with highly desirable properties:
(1) novelty by clear visual distinction to established benchmark sets
in the field, (2) visual and quantitative diversity in the space of TSP
problem characteristics, and (3) significant performance differences
with respect to the restart versions of heuristic state-of-the-art
TSP solvers EAX and LKH. The important aspect of diversity is
addressed and achieved solely by the proposed mutation operators
and not enforced by explicit diversity preservation.
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1 INTRODUCTION
Over the years it has been shown that there (almost) never exists
a single optimization algorithm that performs best across all op-
timization problems for a specific domain. Instead, there usually
exist multiple algorithms with complementary strengths (and weak-
nesses) that form the state of the art in their respective domain [33].
By means of selecting the best algorithm for the problem at hand
(based on a set of informative features characterizing the respec-
tive problem) one can exploit the complementarity of the solvers,
which in turn enables to leverage the state of the art. Although
this selection procedure – commonly denoted Algorithm Selection
Problem – has been studied for many decades [27], it has attracted
more and more interest in recent years [13, 15, 29].

In order to capture and ideally also understand the strengths and
weaknesses of different optimization algorithms, it is very impor-
tant to have a set of diverse benchmark problems. Here, diversity
is relevant with respect to a variety of aspects:

• performance space: in order to analyze differences in solver
behavior, one needs problems that are hard for one solver,
but easy for its contender,

• feature space: features are an essential ingredient for the
distinction of solvers; thus, test problemswith diverse feature
sets facilitate the modeling of accurate algorithm selectors,

• topology: benchmark problems with diverse topologies intu-
itively are more likely to represent problems that could also
occur in real-world applications.

As noted above, understanding a solver’s strengths and weak-
nesses requires test problems that are rather easy for solver A, but
hard for solver B (and vice versa). In earlier works, which exemplar-
ily focused on the Traveling Salesperson Problem (TSP), researchers
used an Evolutionary Algorithm (EA) to (successfully) generate TSP
instances, which are diverse in the performance space, by maximiz-
ing the performance ratio between their two considered solvers
A and B [4, 5]. Unfortunately, although the generated instances
resulted in diverse solver performances, their topologies and thus
also their features still resembled very similar structures.

Meanwhile, other research groups proposed an approach, which
incorporates diversity preservation/maximization techniqueswithin
the instance generating process. In the context of evolutionary di-
versity optimization, Gao et al. [8] used a diversity measure that
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calculates the contribution of each individual with respect to differ-
ent features. Here the contribution of an individual (instance) to
the diversity with respect to a considered feature depends on the
(non-)existence of similar feature values within the population.

In cases in whichmore than one feature is considered, a weighted
sum approach is used to determine the diversity contribution of an
individual to the population. This approach has also been applied
for evolving diverse sets of images with respect to common image
features [1, 24]. However, the weighted sum approach often does
not lead to a good diversity distribution if two or more features
are used. Therefore, investigations have recently been expanded
towards other diversity measures, which are capable of dealing with
multiple features. This includes using the discrepancy measure to
compute a diverse set of solutions [22], as well as the use of popular
multi-objective indicators [23].

The aforementioned EA then evolves a set of instances that maxi-
mizes diversity with respect to important features of the underlying
problem while simultaneously meeting a performance condition
– the ratio of the solvers’ performances needs to be above a given
threshold.

Although the latter approach successfully preserved diversity
in feature space, it strongly impeded the instance generating EA
due to the underlying bi-level approach, i.e., iteratively focusing on
feature diversity and meeting the performance condition. Moreover,
it has so far only been applied to TSP instances consisting of 50
cities. Thus, it is unclear how it will perform on larger instances.

Within this work, we tackle the problem of creating diverse sets
of instances – exemplarily shown with a focus on the TSP – by
proposing a set of sophisticated, problem-tailored mutation opera-
tors that – in contrast to established operators – have a stronger
impact on the point coordinates of nodes in the Euclidean plane.
We show that a simple iterative, non-evolutionary process is suffi-
cient to produce instances that are quite diverse and look different
to well-known and frequently used artificial TSP instances, e.g.,
Random Uniform Euclidean (RUE) or NETGEN (strongly clustered),
and are more similar – from a visual perspective – to, e.g., instances
stemming from real-world VLSI applications. In addition, the in-
stances generated with our proposed approach also show a much
better spread with respect to many problem features. In summary,
our work contributes to all three aforementioned diversity aspects:

• we enable the generation of TSP instances with various
topologies and thereby hopefully also createmore real-world-
like structures,

• we show that these instances also improve the diversity with
respect to multiple features, and

• the resulting instances clearly reveal complementary perfor-
mances of two very prominent TSP solvers.

At last, we want to emphasize that our work so far mainly consti-
tutes a feasibility study. More precisely, we provide a new instance
generator and will show that it can be used for efficiently evolving
diverse problem instances.

The remainder of this paper is structured as follows. Section 2
provides an overview of previous work on algorithm selection and
diversity preservation for the TSP. In Section 3, we introduce an
iterative and an evolutionary approach for creating diverse sets
of TSP instances. The existing and the novel mutation operators

underlying our proposed instance generators are also described
therein. An analysis of the instances created by our iterative and
evolutionary approaches (with respect to feature as well as perfor-
mance diversity) is given in Sections 4 and 5, respectively. Section 6
concludes our work and poses perspectives for future work.

2 BACKGROUND
As the methods proposed within this work are consistently illus-
trated by means of a case study on the TSP, we will first recap the
aim of this well-studied research problem. Afterwards, we provide
a brief summary of two very promising developments on the TSP
from recent years: algorithm selection and diversity maximization.

2.1 Traveling Salesperson Problem
Given a set of nodes and pairwise distances between them, a fun-
damental NP-hard optimization problem in graph theory is to
find a round-trip tour of minimal traveling distance that visits each
node exactly once and returns to the starting node. This problem
is commonly known as the Traveling Salesperson Problem (TSP)
and has countless obvious applications, e.g., in vehicle-routing and
manufacturing of integrated circuits, as well as numerous less ob-
vious applications, e.g., in computational biology [9]. If nodes are
given by points in the Euclidean plane and distances correspond to
pairwise Euclidean distances, the problem is called Euclidean TSP
(and remains NP-hard).

Due to the broad interest in the TSP, years of research endeav-
ours resulted in many well-performing algorithms. In the field of
exact algorithms, i.e., algorithms that guarantee to find an optimal
solution, the sophisticated branch-and-cut based Concorde solver
is the state of the art [2]. Due to its worst-case exponential runtime
it is not well-suited in situations where a good near-optimal solution
is required within a stipulated time limit or the instance size is large.
In inexact TSP solving the state of the art is given by two algorithms:
LKH [10], a local-search based algorithm which implements the
Lin-Kernighan heuristic for k-opt moves, and the evolutionary algo-
rithm EAX [21], which adopts an efficient edge-assembly-crossover
operator. It was shown that these two algorithms are highly efficient
and solve even large instances in reasonable time (at times within
seconds). Respective restart versions of EAX and LKH, which trig-
ger a restart once the original stopping condition is met, are even
more successful [7, 14, 16].

Recent studies also investigated the effects of incorporating a
generalized partition crossover (GPX) operator within EAX and
LKH [17, 28, 31]. However, based on the results shown therein, as
well as some preliminary studies that we conducted ourselves, we
found that these enhancements are only beneficial for much larger
TSP instances (consisting of more than 8 000 cities). We therefore
decided to restrict ourselves to the aforementioned restart versions
of EAX and LKH. In fact, given the superior performances of the
restart versions compared to their vanilla implementations, we will
only use the restart versions. And to facilitate readability, we will
(from now on) simply refer to them as EAX and LKH throughout
this work.
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2.2 Algorithm Selection on the TSP
An area which gained considerable attention in recent years is
per-instance algorithm selection (AS) [13, 15, 29]. Despite the very
strong performances of EAX and LKH across common TSP bench-
marks, algorithm selection has nonetheless been able to leverage the
performance of the state of the art in inexact TSP solving [13, 14, 16].

The usual setup of TSP-related AS studies can be summarized
as follows: given a predefined cutoff time (of usually one hour),
one executes a portfolio of (inexact) TSP solvers on a collection of
(ideally diverse) TSP instances with known optimal tour lengths
– which usually have been verified upfront by Concorde. Each
algorithm runs at most until the given cutoff time has expired and
terminates either successfully – if it has found a tour of optimal
length before the cutoff time was reached – or unsuccessfully. The
time needed by the solver to meet one of the two termination crite-
ria, and the accompanying runstatus (successful vs. unsuccessful)
of the solver are then aggregated (across all instances) within a
scalarized performance indicator such as PAR10, PQR10 or (more
recently) the multi-objective Hypervolume indicator [3, 6, 12].

In addition to measuring the solver performances on the TSP sets,
one also needs to grasp characteristics of the problem instances by
means of ideally quickly computable, yet very informative numeric
features [11, 13, 20, 26, 30]. In case of the TSP, features usually aggre-
gate information based on an instance’s distance matrix, minimum
spanning tree, nearest neighbor graph, convex hull, or distance
between clusters of the cities.

Per-instance algorithm selection models then use machine learn-
ing to find a mapping – usually a classification model – from the
features to the best TSP solver for the corresponding instance. How-
ever, the most recent studies also revealed a weakness within the
current setup: EAX and LKH achieved very strong and often very
similar results across the entire benchmark. This indicates that the
currently used benchmark problems are likely too easy for both
solvers and – more importantly – their topologies are not suffi-
ciently diverse too expose strengths and weaknesses of the two
solvers.

2.3 Diversity
Motivated by earlier work of Ulrich and Thiele [32], who considered
diversity of high quality solutions in the search space, the concept
of evolutionary diversity optimization has been used in [8] to evolve
TSP instances based on given problem features. In particular, this
approach evolves instances that are hard or easy to be solved by
a given algorithm. In [8], diversity is measured according to a
weighted distribution with respect to differences in feature values.

Recently, the notion of star discrepancy [25] has been used in
the context of evolutionary diversity optimizaton [22]. The star
discrepancy measures the diversity of a set X := {X1, . . . ,Xn }

with respect to all axis-parallel boxes
[
®0, ®b

]
, ®b ∈ [0, 1]d . Here d is

the number of features that are considered and we assume that
feature values are normalized to [0, 1] to carry out the diversity
measurement. Formally, the star discrepancy of X is given by

D(X ) := sup

{
VOL

(
[®0, ®b]

)
−

��X ∩ [®0, ®b]
��

n

��� ®b ∈ [0, 1]d
}
,

Algorithm 1 TSPGEN-ITER (n,M , iters)

1: x = set of n points placed uniformly at random in [0, 1]2
2: for i = 1 → iters do
3: Choose a mutation operatorm ∈ M uniformly at random.
4: x =m(x)
5: return x

whereVOL
(
[®0, ®b]

)
is the volume of the d-dimensional hyperbox

given by
[
®0, ®b

]
. The goal is to compute a set X of n elements that

has minimal discrepancy.

3 ON RANDOM INSTANCE GENERATION
The instance generation approach that we employ in the following
is a stochastic one. In a nutshell, n points are placed uniformly at
random in the Euclidean plane, more precisely [0, 1]2, and moved
around by iterative application of stochastic mutation operators
until some stopping criterion is met. We consider two instance gen-
eration algorithms: (1) a simple sequential generation process and
(2) an evolutionary approach. Next, we first describe the algorithms
before we discuss their underlying mutation operators.

Prior to this, let us briefly introduce some terminology. Given
an instance size n ∈ N we denote by ®π1, . . . , ®πn ∈ [0, 1]2 the n
node/city/point coordinates.1 We identify a TSP instance with a
set of points Π = { ®π1, . . . , ®πn }. The instance generation process
is a stochastic mapping that produces such a point set given an
instance size and a bunch of mutation operatorsM along with their
respective parameters. Likewise, each mutation operatorm ∈ M
is a mapping m : Πn → Πn where Πn is the set of all possible
point clouds of n points in [0, 1]2. Further we denote by ®0 ∈ R2 the
two-dimensional zero-vector (or origin).

3.1 Algorithms
Our iterative instance generation process initializes a Random Uni-
form Euclidean (RUE) instance in a first step and iteratively applies
a randomly chosen mutation operator until a predefined number
of iterations is reached (see Alg. 1).

Besides the simple iterative generation process we consider an
EA for targeted generation of instances (see Alg. 2), which are easy
for one solver A and hard for another solver B with respect to the
ratio of PAR10-scores similar to approaches presented by [4, 5, 19].
More precisely, the algorithm maintains a population P of |P | = µ
instances initialized with RUE instances. In the evolutionary loop
each individual x ∈ P is selected uniformly at random and likewise
a mutation operatorm ∈ M is chosen. After mutation, the fitness of
the new individual y =m(x) is determined and survival selection
following a (µ + 1)-strategy assures that the individual with the
poorest fitness is dropped. It should be noted that in contrast to
work conducted in the field of tailored instance generation for the
TSP our algorithm is simplified: (1) it relies on mutation as the
exclusive variation operator (in contrast to, e.g., [20]), and (2) it
does not include any built-in diversity preservation mechanism
(in contrast to, e.g., [8]). However, based on our observations from

1The process operates inside the [0, 1]2 bounding-box for convenience, but this does
not pose a restriction since generated instances can easily be scaled, shifted or rotated
arbitrarily by standard matrix operations.



FOGA ’19, August 27–29, 2019, Potsdam, Germany Bossek et al.

Algorithm 2 TSPGEN-EA (n, µ,M)
1: Generate a population P of size µ; each individual is a set of n

points placed uniformly at random in [0, 1]2
2: while termination criterion not satisfied do
3: Choose x ∈ P at random
4: Choose a mutation operatorm ∈ M uniformly at random.
5: y =m(x)
6: P = P ∪ {y}
7: P = P \ argmaxx ∈P f (x)
8: return argminx ∈P f (x)

exemplary runs of both algorithms we are confident that this does
not constitute a disadvantage. We will support these assumptions
with empirical evidence in Sections 4 and 5. Implementations of
algorithms and mutation operators are wrapped in the software
package tspgen.2

The fitness of an individual x ∈ P is the ratio of PAR10-scores
for two solversA and B on x and we minimize this ratio. Hence, the
algorithm prefers individuals which are easy for algorithm A and
(more) difficult for algorithm B. For clarity: the PAR10-score of an
algorithmA is the average running time ofA on the instance at hand.
However, the running time of unsuccessful runs is replaced with
f ·T , whereT is the predefined cutoff time and f is a penalty factor
for failed runs, which is usually set to f = 10 [3]. This requires
a single run of the exact Concorde solver to calculate the true
optimal tour length in order to determine the runstatus.

3.2 Mutation Operators
Next, we introduce the considered mutation operators in detail.
The reader is recommended to take a look at Fig. 1 while studying
this section as it presents a visual support for the detailed formal
explanations.

At this point it should be noted that some mutation operators
may move points outside the boundaries [0, 1]2. These boundary-
violating points are then simply replaced uniformly at random
within the bounding-box.

3.2.1 Existing Simple Mutation Operators. To the best of our
knowledge, Mersmann et al. [20] were the first authors who ap-
proached targeted instance generation of Euclidean TSP instances
by means of evolutionary algorithms. Their EA adopted the follow-
ing two straightforward mutation operators.

Normal Mutation. A random subset of nodes Q ⊆ Π is selected
at random (each node independently with probability pm ∈ (0, 1)).
Next, each selected point ®π ∈ Q is subject to Gaussian perturba-
tion, i.e.,

®π ′ = ®π +N
(
®0, Σ

)
with Σ = diag(σ ,σ ) =

[
σ 0
0 σ

]
with a predefined standard deviation σ > 0.

Uniform Mutation. Another very simple mutation operator that,
e.g., has been used in [20]. Each point ®π ∈ Π is replaced with
probability pm ∈ (0, 1) by ®π ′ = (π ′

1,π
′
2)
T , where π ′

i ∼ U[0, 1].

2GitHub code-repository: https://github.com/jakobbossek/tspgen

3.2.2 New Sophisticated Mutation Operators. Both aforemen-
tioned mutation operators, normal and uniform mutation, affect the
instance under construction only marginally; even if a lot of nodes
are subject to mutation (as performed in Fig. 1 for visual clarity) the
mutant is – at least purely visually – indistinguishable to its parent.
This holds true after multiple iterations and the effect is even in-
tensified with growing instance size. These observations were the
starting point and the motivation for the creative design of new,
more sophisticated and problem tailored mutation operators. The
ideas are based on observations of real-world instances, above all
instances from applications in Very Large Scale Integration (VLSI),
where we are often confronted with dense groups of nodes, areas
with very few or even no nodes at all and nodes arranged along a
line or in grid structures.

Explosion Mutation. This operator is meant to tear holes into the
point cloud. This is achieved by simulating a random explosion.
First, we select the center of explosion ®c ∈ [0, 1]2 and the explosion
radius or explosion strength r ∈ U[rmin, rmax] at random. All points
®π ∈ Πwithin the radius r of the center ®c , i.e., points with a Euclidean
distance of d( ®π , ®c) ≤ r , are affected by the explosion. These points
are moved away from the center of explosion as follows:

®π ′ = ®c + (r + si ) ·
®c − ®π

| |®c − ®π | |
,

where si ∼ Exp(λ = 1/10) is a random value sampled from an expo-
nential distribution defining the impact of the explosion (outside of
the explosion radius r ) on each of the individual points. The formula
ensures, that all points inside the explosion radius are pushed out
of the explosion area and – depending on the magnitude of si – ride
the detonation wave even a little further. Note that due to the ran-
dom location and strength of the explosion, points may be moved
outside the feasible space [0, 1]2. Here the repairing mechanism
described earlier takes care of these points.

Implosion Mutation. This operator is kind of the inverse to the
explosion mutation and hence its setup is basically identical: sample
a center of implosion ®c ∈ [0, 1]2 (internally termed the black hole) and
an implosion radius r ∈ U[rmin, rmax] and shift all points located
within the implosion region, i.e., points ®π ∈ Π with a distance
d( ®π , ®c) ≤ r , closer towards the implosion center, i.e.,

®π ′ = ®π + (®c − ®π ) ·min{|τ |, r }.

Here, (®c − ®π ) is the direction vector between implosion center ®c and
point ®π , and τ ∼ N(0, 1) is a random number which stems from a
standard normal distribution.

Cluster Mutation. This operator introduces dense clusters of
points by performing the following steps. First, we sample a cluster
center ®c ∈ U[0, 1]2 at random. Next, a set of points Q ⊆ Π are
selected at random and replaced by an identical number of points,
which are randomly drawn from an uncorrelated bivariate normal
distribution N(®c, diag(σ ,σ )). Here σ ∼ U[0.001, 0.3] determines
the compactness of the generated cluster.

Rotation Mutation. A subset of points Q ⊆ Π is sampled uni-
formly at random. Let ΠQ ∼ (|Q |, 2) denote the |Q | times two
matrix of point coordinates of the selected points. The mutation

https://github.com/jakobbossek/tspgen
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Operator: Cluster Operator: Expansion Operator: Compression Operator: LinearProjection Operator: Grid

Operator: InitialSolution Operator: Normal Operator: Uniform Operator: Explosion Operator: Implosion
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Figure 1: Visualization of considered mutation operators. The leftmost plot in the top row shows the initial solution used for
eachmutation. PointsQ ⊆ Π affected bymutation are shown as filled black diamonds while the remaining (untouched) points
Π \Q are shown as gray crosses. Note that for demonstration purposes points which are moved beyond the boundaries [0, 1]2
by mutation (e.g., by explosion) are not “repaired” for clarity and hence not visible in the above plots since occasionally the
repairing mechanism obscures the impact of mutation.

operator performs a rotation, i.e.,

Π′
Q = ΠQ · R with R =

[
cos(α) sin(α)

− sin(α) cos(α)

]
where α ∈ U[0, 2π ] is a randomly selected rotation angle. As the
rotation is anchored in the origin of the Euclidean plane, the rotated
set of points is afterwards shifted to a uniformly at random selected
point within [0, 1]2.

Linear Projection Mutation. A subset of pointsQ ⊆ Π is chosen at
random. Next, a random linear function f (x) = β0+β1 ·x is sampled.
Here, β0 stems from a U[0, 1] distribution and β1 is sampled from
U[−3, 0] if β0 < 0.5 and from U[0, 3] otherwise. This distinction
of cases ensures that the linear function runs inside the bounding
box [0, 1]2 with high probability. In a final step the operator sets
π ′
1 = π1 and π ′

2 = f (π1) = (β0 + β1 ·π1) for each ®π = (π1,π2)T ∈ Q ,
i.e., the mutants will be projected to the linear function. Finally,
with probability pjit ∈ [0, 1] Gaussian noise with a mean of zero
and a standard deviation of σjit is added to the second coordinate π ′

2
for each mutated point independently.

Expansion Mutation. This operator combines the ideas of the
explosion and linear projection mutation. In fact, one could imag-
ine placing a tube around a linear function and all points within
that tube will be (orthogonally) pushed out of that region. As this
operator also acts on linear functions, its first steps are identical
to the previous operator: randomly sample a subset of potential
mutantsQ ⊆ Π and a linear function f (x) = β0+ β1 ·x as described

before. In order to push the points orthogonally away from the
linear function, we first compute the orthogonal projection

®q = ®b +
(
( ®π − ®b)T · ®u

)
·

®u

| | ®u | |

for each of the mutants ®π ∈ Q to the linear function f (x). Here
®b = (0, β0)T is a reference point on and ®u = (1, β1)T the direction
vector of the linear function. The mutants are then pushed away
from their orthogonal projections – and hence also from the linear
function – as follows:

®π ′ = ®q + (w + si ) ·
®π − ®q

| | ®π − ®q | |
,

where w ∈ U[wmin,wmax] is the (uniformly at random drawn)
width of the tube surrounding the linear function and si ∼ Exp(λ =
1/10) is a random value providing a small additional impact of the
explosion on the affected individuals.

Compression Mutation. Complementing the expansion mutation,
this operator squeezes a set of randomly selected points Q ⊆ Π
from within a tube (surrounding a linear function) towards the
tube’s central axis. The mechanics of this mutation operator are
completely identical to the expansion mutator except for the final
transformation. That is, the compressed points are computed as

®π ′ = ®q − (®π − ®q) ·min{|τ |, 1},
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where ( ®π − ®q) is the direction vector from point ®π to its orthogonal
projection ®q and τ ∈ N(0, 1) is a standard normal distributed value
defining the compression strength.

Axis Projection Mutation. This is a special case of linear pro-
jection mutation, where the linear function is axis-parallel with
probability 1. An axis j ∈ {1, 2} and a value c ∼ U[0, 1] are sampled
uniformly at random. Note that j = 1 corresponds to the x-axis
and j = 2 to the y-axis. Next, for a random subset Q ⊆ Π we set
πj = c for all ®π = (π1,π2)T ∈ Q , i.e., we replace the x- or y-values
(depending on the sampled choice of a) for all points in ®π ∈ Q by c .
Afterwards, with probability pjit the mutated points are subject to
normal perturbation, i.e., ®π ′ = ®π +N(®0, diag(σ ,σ )) with σ > 0.

Grid Mutation. The widthw and height h of a box are drawn uni-
formly at random from the U(bmin,bmax)-distribution. Here, bmin
and bmax are parameters of the mutation operator which determine
the possible range of box-width and -height, respectively, for sam-
pling. Next, the box is placed at a random location in the Euclidean
subspace [0, 1]2. Upon placement, all points ®π ∈ Q ⊆ Π located
inside the box are subject to mutation. Q is replaced with a regular
quadratic grid of points with dimension d = ⌊

√
|Q |⌋. Note that the

alignment of the points within the grid is quadratic, but this does
not imply that the horizontal and vertical distances between neigh-
bors are identical. Further, if d2 < |Q |, a subsetQsub ⊂ Q is sampled
uniformly at random (and without replacement), whose points are
then aligned in the aforementioned quadratic grid structure. All
the remaining points of Q \Qsub remain untouched. Afterwards,
the entire grid is rotated with probability prot, which is another
parameter of the mutation operator. The rotation is performed by
a randomly selected angle α ∈ U[0,π/2] and it is anchored in the
grid’s center. At last, the mutated points will be normally perturbed,
i.e., ®π ′ = ®π +N(®0, diag(σ ,σ )), with probability pjit and σ > 0.

4 ANALYSIS OF GENERATED INSTANCES
In this section we experimentally evaluate the suitability of the so-
phisticated mutation operators to generate a diverse set of instances.
Here, we focus on the iterative generation process.

First, in order to illustrate the working principle of the iterative
generation process, Alg. 1 was run for 250 iterations. Exemplary
results are shown in Fig. 2, where M either is comprised of only
simple operators (normal or uniform mutation) or is the group of
introduced sophisticated operators. It becomes obvious that the
sophisticated operators lead to instances of varying topologies and
structures at all stages of the generation process (bottom row of
Fig. 2), whereas usage of the simple operators (top row) does not
substantially alter the random distribution of points.

The differences between the instance topologies are also reflected
in feature space as well, as illustrated in Fig. 3. The feature space
is exemplarily spanned by the two features hull ratio and number
of strong connected components in the nearest neighbor graph (nng)
which proved to be very informative in previous studies [20, 26].
The iterative instance generation process is tracked in feature space,
i.e., each colored dot represents the topology of a generated instance
at a specific iteration. The previously described instances in Fig. 2
are specifically labelled reflecting the 50th , 100th , . . . , 250th itera-
tion. A huge increase in feature space diversity, especially in terms

of the nng feature, is clearly visible in case the sophisticated muta-
tion operators are used for generating the instances.

4.1 Experimental Setup
For a systematic investigation of the mutation operators, we gener-
ated a benchmark set – denoted TSPGEN in the following – com-
prising of 600 TSP instances in total, which corresponds to 150
instances per instance size n ∈ {500, 1 000, 1 500, 2 000}. Each in-
stance is the result of 1 000 iterations of Alg. 1. For comparison we
consider each 600 instances of three artificial instance sets stem-
ming from a recent study on per-instance algorithm selection for
the TSP [14]: Random Uniform Instances (RUE), instances with dis-
tinct clusters structures (NETGEN) and instances which originate
from “morphing” pairs of RUE and NETGEN instances of equal
size (called MORPHED in the following).3 Fig. 5 plots embeddings
of (randomly chosen) exemplary instances from the considered
sets (RUE, NETGEN, MORPHED in the first row) and five TSPGEN
instances of sizes 500, 1 000 and 2 000 (second to fourth row).

From a purely visual inspection the human eye can detect obvi-
ous differences between the established benchmarks and the new
benchmark set. Recalling the effects of the different mutation oper-
ators one can easily recognize the resulting structures and combi-
nations of them in the TSPGEN instances. Moreover, in particular
the linear/axis projection and grid mutation operators – inspired
by observations on real-world TSP instances stemming from ap-
plications in Very Large Scale Integration (VLSI) – lead to much
stronger (visual) similarities to VLSI instances (see top-right plot
in Fig. 5 for an example of a real-world VLSI instance4). We are
confident that a restriction to a subset of the new operators and
tweaking their parameters may result in instances that are even
more similar to VLSI. Albeit this is a promising research question,
we consider it out of scope for this work.

4.2 Impact on Feature Space
As expected, the new instance set TSPGEN achieved a much higher
diversity in feature space than the already existing TSP sets RUE,
NETGEN or MORPHED. This is confirmed by Fig. 4, which shows
exemplary embeddings of all considered instances in the two-di-
mensional feature space for a selection of informative TSP features.
Moreover, our findings are not only based on visual comparisons,
but can also be quantified by means of discrepancy values (listed
in Tab. 1). Noticeably, for the majority of considered feature pairs
P1 to P4 and instance sizes the discrepancy values for TSPGEN are
consistently the lowest in comparison with the other three TSP
sets with a single exception. This observations holds true for the
majority of features across the considered feature sets.

4.3 Comparison of Algorithm Performance
In addition to the diversity in instance space – more precisely in
topology and feature space – solver performances on the newly
generated instances are of crucial interest. For the purpose of per-
formance comparison we rely on the well-known PAR10-score [3]
and thus first determine the optimal tour length per instance by

3Morphing is designed to create instances “in-between” two instances of equal size by
building convex combinations of points [18, 20].
4Source: http://www.math.uwaterloo.ca/tsp/vlsi/

http://www.math.uwaterloo.ca/tsp/vlsi/
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Figure 2: TSP instances at iterations 50, 100, 150, 200 and 250 generated during an exemplary generation process with only simple
mutation operators (uniform and random mutation; top row) and the set of introduced sophisticated operators (bottom row).
See Fig. 3 for a visualization of some exemplary feature vectors.
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Figure 3: Visualization of the iterative instance generation
process (n = 500 nodes) in the two-dimensional feature sub-
space spanned by ratio of nodes on the convex hull and num-
ber of strong connected components in the (five) nearest neigh-
bor graph. Each point represents the feature vector of the in-
stance at iteration i ∈ {1, . . . , 250}. In the left plot only simple
mutation operators (uniform and normal) were used, while
the instances in the right plot are based on the proposed (so-
phisticated) mutation operators. See Fig. 2 for exemplary in-
stances corresponding to the labeled feature vectors.

a single run of Concorde. Then, EAX and LKH are both run 10
times on each instance until they either found an optimal tour or
reached the cutoff time of one hour (= 3 600 seconds).

Fig. 6 shows a scatterplot in which EAX and LKH are compared
in terms of PAR10. Noticeably, neither the established nor the newly
generated TSP sets pose severe challenges for EAX as none of the
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Figure 4: Two-dimensional embeddings of all instances in
the feature space shown for four exemplary feature pairs.
The shape and color of an instance indicate the correspond-
ing TSP set.

PAR10 scores comes close to the cutoff time of one hour. Contrar-
ily, several of such incidences can be observed for LKH. However,
as reflected by Fig. 7 none of the differences in solver behaviour
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TSPGEN (n=2000) #1 TSPGEN (n=2000) #2 TSPGEN (n=2000) #3 TSPGEN (n=2000) #4 TSPGEN (n=2000) #5

TSPGEN (n=1000) #1 TSPGEN (n=1000) #2 TSPGEN (n=1000) #3 TSPGEN (n=1000) #4 TSPGEN (n=1000) #5

TSPGEN (n=500) #1 TSPGEN (n=500) #2 TSPGEN (n=500) #3 TSPGEN (n=500) #4 TSPGEN (n=500) #5

NETGEN (2 clusters) NETGEN (5 clusters) RUE MORPHED VLSI

Figure 5: Exemplary TSP instances. The top row depicts randomly drawn examples for RUE, NETGEN, MORPHED and VLSI
(from left to right), while the remaining rows show examples of TSPGEN instances with n = 500, n = 1 000 and n = 2 000 (second
to fourth row), respectively.

appears to be substantial – independent of the considered TSP set
or instance size – as all boxplots are rather narrow and most of
them are located close to the dashed horizontal line indicating equal
solver performances.

Therefore, diversity in instance space itself does not necessarily
impact solver performance and specifically does not automatically
allow for differentiating between contrasting behavior of EAX
and LKH. Instead, the instance generation process rather has to
be tailored to the latter requirement, i.e., diverse and structured
instances with contrasting solver performances resulting in low or
high solver ratios, respectively, are desired. Section 5 successfully

addresses this issue by introducing an evolutionary algorithm for
this purpose which relies on the sophisticated mutation operators.

5 EVOLVING INSTANCES
As the results of Section 4 have shown, our proposed mutation
operators already enable the creation of instances with different
topologies and diverse feature spaces. However, in order to learn
more about the strengths and weaknesses of the TSP solvers, the
instance generator has to be modified such that the produced in-
stances are also diverse in performance space. For this purpose, we
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Table 1: Discrepancy values per TSP set (NETGEN, MOR-
PHED, RUE and TSPGEN) based on four different feature
pairs. The best values per feature pair and instance size are
highlighted by a grey background and shown in bold face.

Feature TSP Set
Pair n NETGEN MORPHED RUE TSPGEN

P1 500 0.963701 0.984723 0.938320 0.891051
1000 0.965516 0.979235 0.944619 0.876623
2000 0.965124 0.976613 0.942641 0.799466
all 0.938831 0.963547 0.912327 0.777744

P2 500 0.999999 0.999996 0.999981 0.999954
1000 0.999997 0.999992 0.999968 0.999796
2000 0.999991 0.999987 0.999954 0.999647
all 0.991710 0.999987 0.999953 0.743355

P3 500 0.868605 0.543763 0.778247 0.544127
1000 0.919629 0.704024 0.726990 0.553577
2000 0.947947 0.795681 0.736480 0.656737
all 0.869564 0.550744 0.718269 0.538920

P4 500 0.925268 0.845305 0.878857 0.634727
1000 0.957370 0.899190 0.837975 0.644285
2000 0.977442 0.951574 0.890660 0.721881
all 0.926310 0.845305 0.781557 0.518082
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Figure 6: Scatterplots of mean running times for EAX and
LKH measured by means of PAR10. The dashed lines indi-
cate the cutoff time (T = 3 600s) used for terminating unsuc-
cessful runs of EAX and LKH, as well as the penalty score
for unsuccessful runs (ten hours).

abandon the iterative approach from Alg. 1 and instead make use
of the EA described in Alg. 2, which is tailored to the creation of
instances that are hard for solver A and easy for solver B (or vice
versa).

5.1 Experimental Setup
Our goal is to evolve instances that are easy for solver A and hard
for its contender B by means of the EA described in Section 3, and
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Figure 7: Boxplots of the log-scaledmean PAR10-ratios split
by instance size and TSP set. The dashed horizontal line
marks the ratio of 1, where both solvers exhibit a similar
performance. Ratios below that line (blue background) in-
dicate an advantage for EAX, whereas ratios above the line
(yellow background) are advantageous for LKH.

to follow a similar setup as used in [4, 5]. We generate 50 instances
for each pair (A,B) with A,B ∈ {EAX, LKH} and each collection of
mutation operators (simple vs. sophisticated). In total, this process
produced 200 instances: 50 instances that are supposedly easy for
EAX and have been generated exclusively based on the simple mu-
tation operators, another 50 that are easy for EAX but are based on
the sophisticated operators, etc. Note that in this series of experi-
ments we (for now) restricted ourselves to instances of size 500 due
to computational reasons.5

The rest of the setup is as follows: population size µ = 5, cutoff
time of five minutes (= 300 seconds) for each algorithm run of
A and B with five independent runs per algorithm and instance.
The mutation operators are drawn uniformly at random and the
mutation parameters are set as follows: probability of mutation
pm = 0.1, probability of rotation prot = 0.5, probability to add jitter
to mutated points pjit = 0.5, standard deviation for jitter σjit = 0.05
and rmin = bmin = 0.1, as well as rmax = bmax = 0.4 for the
minimal and maximal radius/distance (e.g., for explosion mutation).
Note that each node is mutated independently with probability pm
and therefore in expectation 10% of the nodes are moved. We find
this quite high number adequate for our work because there is no
crossover at all. Further, we want to mention that pm is not relevant
for mutation operators that are based on distances (e.g., implosion
or explosion). Here, the fraction of mutated points may be even
higher if a large explosion/implosion takes place.

The instance generating EA was given 48 hours of walltime for
each job as the single stopping condition.

5.2 Analysis of Evolved Instances
As our experiments showed, it is indeed possible to generate in-
stances that are easy for EAX and hard for LKH (and vice versa).
Fig. 8 shows boxplots of the PAR10-ratios for the four TSP sets
generated by our tailored EA. In particular the two instance sets
that were supposed to be favorable for EAX clearly managed to
5Our fitness function minimizes the PAR10-ratio of A and B . In order to compute
the PAR10-scores for A and B , respectively, the optimal tour per instance has to be
known upfront – and hence needs to be computed with Concorde. As the latter has
exponential worst-case running time, we minimize the risk of very long running times
by keeping the instance size low.
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Table 2: Summary of three commonly used average perfor-
mancemeasures: running time of successful runs (RTS), fail-
ure ratio (FR) and the PAR10 score. The performances are
listed per solver (EAX and LKH) and across all evolved in-
stance groups, as well as for RUE (as a baseline).

TSP Set Mutation RTS* FR† PAR10

EAX LKH EAX LKH EAX LKH

RUE - 1.26 0.74 0.00 0.00 1.26 0.74

Easy for simple 1.34 912.78 0.00 0.20 1.34 7 608.11

EAX sophistic. 0.97 830.80 0.00 0.22 0.97 8 230.61

Easy for simple 117.97 0.74 0.00 0.00 117.97 0.74

LKH sophistic. 67.90 0.88 0.00 0.00 67.90 0.88
* RTS: Running time of successful runs, † FR: Failure ratio

draw the boxplots into their beneficial (light blue) area. However,
possibly even more remarkable are the two boxplots depicting the
PAR10-ratios of the LKH-friendly instances. Given that EAX con-
sistently showed a very strong performance and usually neither
comes close to the cutoff time (of one hour) nor performs much
worse than LKH – as indicated by the ‘blank space’ in the bottom
right of Fig. 6 – observing a shift of the PAR10-ratios (towards
magnitudes of 102) in favor of LKH is a very remarkable result.

The effectiveness of the evolutionary instance generator is also
clearly visible in Fig. 9, which depicts the PAR10-scores of the two
solvers for each of the evolved instances. Noticeably, both mutation
operator sets manage to produce instances that can be solved by
EAX within roughly a second but are much harder for LKH (de-
picted by purple squares) and frequently even result in timeouts.
Similarly, one can see that the EA is also capable of producing in-
stances that are solved by LKH in less than a second, whereas EAX
requires up to three minutes (blue circles). And while these values
themselves might not sound impressive at first sight, one should
recall that EAX showed very strong performances throughout our
experiments and thus finding instances that pose at least some
challenge for EAX should be considered a success.

These findings are also in line with the performance values
given in Tab. 2, according to which it is much harder to evolve
instances that are hard for EAX than for LKH. While all runs of EAX
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Figure 9: Scatterplots of log-scaled PAR10 performance val-
ues for EAX and LKH on the evolved instance sets. The
dashed lines indicate the cutoff times – for the evolution pro-
cess (C = 300s) and the actual benchmark study (T = 3600s) –
as well as the penalty score for the unsuccessful runs.

across all TSP sets terminated successfully within the given time,
roughly 20% of the LKH runs on the EAX-friendly instances failed
to find an optimal tour within the given time budget. Moreover,
we observed that both solvers managed to solve instances, which
have been generated using the sophisticated mutation operators,
faster than their corresponding counterparts, which are based on
the simple mutation operators. This might indicate that both solvers
can handle structured instances better than instances with rather
random topologies (such as RUE). From a practical point of view,
these would be great news – if they can be confirmed in future
studies – as real-world problems usually possess more structure
than the nonetheless frequently studied RUE instances.

Both figures that have been discussed so far within this section,
i.e., Fig. 6 and 8, also display results for RUE instances to allow for a



Evolving Diverse TSP Instances by Means of Novel and Creative Mutation Operators FOGA ’19, August 27–29, 2019, Potsdam, Germany

Easy for LKH
(sophisticated)

PAR10: 0.35 vs 1.18

Easy for LKH
(sophisticated)

PAR10: 0.78 vs 4.78

Easy for LKH
(sophisticated)

PAR10: 1.17 vs 2.63

Easy for LKH
(sophisticated)

PAR10: 1.57 vs 14.37

Easy for LKH
(sophisticated)

PAR10: 7.52 vs 59.44

Easy for LKH
(simple)

PAR10: 0.51 vs 10.50

Easy for LKH
(simple)

PAR10: 0.80 vs 18.91

Easy for LKH
(simple)

PAR10: 0.87 vs 22.78

Easy for LKH
(simple)

PAR10: 1.00 vs 24.80

Easy for LKH
(simple)

PAR10: 4.88 vs 34.12

Easy for EAX
(sophisticated)

PAR10: 0.73 vs 32487.13

Easy for EAX
(sophisticated)

PAR10: 0.86 vs 32668.00

Easy for EAX
(sophisticated)

PAR10: 0.87 vs 32689.91

Easy for EAX
(sophisticated)

PAR10: 0.89 vs 36000.00

Easy for EAX
(sophisticated)

PAR10: 0.93 vs 36000.00

Easy for EAX
(simple)

PAR10: 0.92 vs 36000.00

Easy for EAX
(simple)

PAR10: 1.17 vs 36000.00

Easy for EAX
(simple)

PAR10: 1.19 vs 36000.00

Easy for EAX
(simple)

PAR10: 1.25 vs 32497.80

Easy for EAX
(simple)

PAR10: 1.47 vs 32596.95

Figure 10: The five most extreme evolved instances based on the smallest PAR10-ratios (from left to right). The instances are
shown for each direction of optimization (easy for EAX or LKH, respectively) and set of used mutation operators (simple vs.
sophisticated).
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baseline comparison.6 Obviously, this instance set does not pose any
challenge to either one of the two solvers as both algorithms solve
the majority of RUE instances (with 500 nodes) within a second.
Therefore, although this set is frequently used within TSP studies,
it appears to be too easy to deliver useful insights into the solvers’
strengths and weaknesses – unlike our evolved and solver-specific
tailored TSP instances.

Recalling the setup of the evolutionary generation process, we
noticed another striking result within the solvers’ performances.
Throughout the evolutionary process, our instance generator as-
sessed an instance’s difficulty based on five independent runs with
a maximum time of 300s each, whereas the final results are based
on ten independent runs with a maximum of 3 600s each. However,
as one can see in Fig. 9, instances that are challenging for LKH
given a five minute cutoff time (C = 300), frequently also resulted
in failed runs when given a time budget of one hour.7 Therefore,
we can conclude that instances that are not solved to optimality
within a few minutes are likely to remain unsolved within an hour.

We further depict the five most extreme instances (regarding the
PAR10-ratio) for each of the four evolved instance sets in Fig. 10. As
already discussed within Section 4, instances that were generated
with the simple mutation operators (first and third row) are visually
indistinguishable (for humans) – neither from each other nor from
RUE instances. However, instances generated using the sophisti-
cated mutation operators might be useful to detect patterns that
make a problem hard (or easy) for a solver. For instance, the cities
within TSP instances that are easy for EAX (second row) tend to
be more often aligned along a linear line than for the LKH-friendly
instances (fourth row). In case of the EAX-friendly instances, we
also observed a tendency towards larger gaps between the cities,
which have to be bridged by the solvers when trying to find the
optimal tour.

Concerning the diversity in feature space, a further pattern can
be found. The evolved TSPGEN instances result, similar to the TSP-
GEN instances from Fig. 4, in a wider spread across the feature
space of feature pairs P1 to P4 than the established RUE instances
(see Fig. 11). However, by looking at the corresponding four scatter-
plots in more detail, one can observe that especially the instances
evolved by means of the sophisticated mutation operators (depicted
as blue circles and green triangles) cause the spread. Please note that
these results are achieved even though the EA has no sophisticated
diversity maximization sub-routine at its disposal. These findings
are also supported by Tab. 3, which lists the discrepancy values of
the four evolved instance sets and the RUE instances across the
four feature pairs P1 to P4. Here, discrepancy values of the TSP sets
based on the sophisticated mutation operators are systematically
smaller than the ones of their simpler counterparts.

6 CONCLUSION
This work addressed the problem of target-oriented generation of
diverse benchmark instances for the Euclidean Traveling Salesper-
son Problem (TSP). For this, we introduced a set of sophisticated
stochastic mutation operators that very effectively rearrange points
6RUE instances were used for the initial population of the evolving EA and are also
commonly used within the majority of TSP studies.
7Note that we used the restart version of LKHwhich triggers a restart once the internal
stopping criteria of vanilla LKH are met.
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Figure 11: Two-dimensional embeddings of all evolved in-
stances in the feature space exemplarily shown for the four
feature pairs illustrated in Fig. 4. The evolved instances are
complemented by a random subset of RUE instances for a
baseline comparison. The shape and color of an instance in-
dicate its corresponding group membership.

Table 3: Discrepancy values computed for the four exem-
plary feature pairs from Fig. 4 and across five TSP sets: four
sets created with our proposed iterative instance generator
(see Alg. 1), and a set of RUE instances for comparison.

Feature Easy for EAX Easy for LKH
RUE

Pair simple sophisticated simple sophisticated

P1 0.852740 0.400787 0.837660 0.581755 0.886720
P2 0.812654 0.650487 0.835355 0.712188 0.664041
P3 0.634240 0.498067 0.648000 0.422840 0.648950
P4 0.715040 0.545934 0.759549 0.657589 0.737224

in the Euclidean plane. Our experiments revealed that instances
generated by a simple iterative algorithm, which incorporates these
stochastic operators, possess verymultifaceted topologies andmore-
over are much more diverse in the feature space – with respect to
visual perception and the discrepancy measure – than instances
evolved with established operators.

Motivated by the promising results, we plugged these opera-
tors into a simple evolutionary algorithm to evolve instances that
minimize the PAR10-ratio of two state-of-the-art solvers in inexact
TSP-solving (the restarts versions of EAX and LKH). The resulting
instance sets (1) expose a large difference in algorithm performance
(easy for one solver and hard for its contender), and (2) cover a
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broader spectrum of important instance characteristics in compari-
son to the baseline operators commonly used in the literature so far.
We stress that the latter property is highly desirable and achieved
without a complicated diversity preservation mechanisms build
into the instance generating evolutionary algorithm. Both aspects
clearly pave the way for further interesting studies on algorithm
selection for the TSP by adopting the newly developed methods for
benchmark generation purposes.

Moreover, we see much potential in the mutation operators
themselves. Adjusting the parameters of the mutation operators,
considering only subsets of operators and adopting a bi-level op-
timization approach, in which we optimize both PAR10-ratio and
diversity, may lead to even more diversity in feature space.

As a concluding remark, this work can only be seen as a founda-
tion for exciting future work in the field of algorithm selection.
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