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Introduction

We rely on secure communication in everyday life
Strong cryptographic properties are an absolute requirement of
modern communication systems
A common choice in secure communication: block ciphers

symmetric key cryptography
Substitution-Permutation Network (SPN) ciphers
use of substitution boxes (S-box) to induce nonlinearity

An (n,m) S-box is a mapping from n to m Boolean variables
Examples: 4× 4 (PRESENT), 5× 5 (Keccak), 8× 8 (AES)
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Motivation

Objectives
Strong S-boxes are necessary in block ciphers to make the whole
cipher strong

We need efficient ways to generate S-boxes with good
cryptographic properties
Evolutionary algorithms? They do well, for smaller S-box sizes...
Even if EAs work (or do not), we do not understand how difficult
is this problem and how to solve it better
We need to understand the fitness landscape to design better
search methodologies
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Substitution Boxes

S-box is a vectorial Boolean function with n input variables and
m output values
In SPN type ciphers: we consider only bijective functions (each
input vector corresponds to a unique output vector)

as a consequence: number of inputs is equal to the number of
outputs (n × n)

A suitable representation of a bijective n × n S-box is the
permutation encoding on [0, 2n − 1]

permutation preserves the bijectivity property
Resulting search space: 2n! possible solutions
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Cryptographic Properties of S-boxes

To resist linear cyptanalysis, S-box needs to have a high
nonlinearity (among other things)
Nonlinearity NF is evaluated using the Walsh-Hadamard
transform and is bounded above by

NF ≤ 2n−1 − 2
n−1
2

n × n 3× 3 4× 4 5× 5 6× 6 7× 7

Size 8! ≈ 215 16! ≈ 244 32! ≈ 2117 64! ≈ 2296 128! ≈ 2716

max NF 2 4 12 24 56

NF only assumes even positive values! (0, 2, 4 . . . )
Is there a way of obtaining any gradient information...?
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Fine-grained Nonlinearity

S-box nonlinearity is calculated with regard to its component
functions, of which there are 2n

Nonlinearity of an S-box is equal to the smallest nonlinearity of
each of its component functions, e.g.

NF (CF ) = {4, 2, 6, 4, 2, 2, 4, . . . }

Total nonlinearity equals 2 (the lowest value)

Grade different S-boxes of the same nonlinearity on the basis of
the number of occurrences of the lowest value (the smaller, the
better)
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Fitness Functions

We define two fitness functions, both to maximize nonlinearity:
fitness 1: NL = NF

fitness 2: NLf = NF + 1
num_occurrences

num_occurrences: the number of smallest nonlinearity values in
all component functions

{4, 2, 6, 4, 2, 2, 4, . . . } =⇒ NL = 2,NLf = 2.333

{4, 2, 6, 4, 4, 6, 4, . . . } =⇒ NL = 2,NLf = 3

The above objective functions define two separate landscapes to
analyze
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Fitness Landscapes

Fitness Landscape
Fitness landscape analysis: investigates the dynamics of search
techniques using models representation;

Fitness landscape: A graph G=(N,E) where nodes represent
solutions, and edges represent the existence of a neighbourhood
relation given a move operator:

Defining the neighbourhood matrix for N can be very
expensive;
Hard to extract useful information about the search landscape
from G.
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Fitness Landscape Analysis

Local Optima Network: A
simplified landscape
representation...

Nodes: Local optima /
Basins of attraction;
Edges: Connections between
the local optima;
Two basins of attraction are
connected if at least one
solution within a basin has a
neighbour solution within
the other basin, given a
defined move operator.

Figure: A LON example
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Local Search

To build a LON, we employ a greedy deterministic hill climber
The algorithm relies on a given neighbourhood N (.)

1: s ← initial solution
2: while there is an improvement do
3: s∗ = s
4: for each s∗∗ in N (s) do
5: if F (s∗∗) > F (s∗) then
6: s∗ ← s∗∗

7: end if
8: end for
9: s = s∗

10: end while
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Neighbourhood Structure

Individuals are permutation vectors of size 2n

We consider two neighbourhoods:
SWAP (toggle): exchange two elements in the permutation
INVERT: invert the order of elements between two points

Neighbourhood size - the same for both operators:

2n (2n − 1)
2

e.g. in case of 7× 7 S-box, there are 8127 neighbours
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LON Building

The same local search is performed starting from a set of initial
solutions (ideally, a whole search space)
All the local optima and their basins of attraction (sets of
solutions) are recorded
The second phase: build connections between LO’s basins of
attraction
If any solution from one basin is a neighbour to any solution in
the second basin, a connection is formed
Repeat for every pair of basins (local optima)
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Experiments

S-box experiment variants

S-box size (3× 3 and larger);
fitness function: NL or NLf ;
neighbourhood type (swap, invert);
number of samples (unique initial solutions).
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Topological properties of local optima networks

Function Operator nv ne z Cr C l π S

NL
swap 10, 752 169, 344 31.5000 0.0029 0.0748 3.6373 1.00 1.00
invert 10, 752 593, 376 110.375 0.0103 0.0947 2.5466 1.00 1.00

NLf
swap 10, 752 203, 616 37.8750 0.0035 0.1044 3.5359 1.00 1.00
invert 10, 752 657, 888 122.375 0.0114 0.1006 2.4918 1.00 1.00

Table: General LON and basins’ statistics for S-box size 3× 3.

Graph metrics:
nv - number of vertices (nodes, local optima)
ne - number of edges;
z - average degree;
C - average clustering coefficient (Cr of corresponding random
graphs);
l - average shortest path length between any two local optima;
π - connectivity, S - number of non-connected components
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Topological properties of 3× 3 S-boxes

Function Operator nv ne z Cr C l π S

NL
swap 10, 752 169, 344 31.5000 0.0029 0.0748 3.6373 1.00 1.00
invert 10, 752 593, 376 110.375 0.0103 0.0947 2.5466 1.00 1.00

NLf
swap 10, 752 203, 616 37.8750 0.0035 0.1044 3.5359 1.00 1.00
invert 10, 752 657, 888 122.375 0.0114 0.1006 2.4918 1.00 1.00

Table: General LON and basins’ statistics for S-box size 3× 3.

The results cover the whole search space (8! = 40, 320 solutions)
The entire LON is a single graph (for both neighbourhoods)
High number of local optima, high degree, small minimum
distances
A method like Tabu search should be able to explore the whole
network

For larger sizes, we retain the NLf fitness only.
16 / 26



Introduction
Background
Experiments
Conclusions

Topological properties for larger sizes, NLf

Size Operator Samples nv ne z Cr C l π S

4x4

swap 100, 000 74, 641 908, 454 24.3420 0.0003 0.0026 5.3995 1.00 1.00
swap 500, 000 351, 313 4, 943, 785 28.1446 0.0001 0.0035 5.8146 1.00 1.00
invert 100, 000 81, 388 7, 135, 032 175.334 0.0022 0.3530 2.9936 1.00 1.00

5x5
swap 10, 000 7, 370 65, 383 17.7430 0.0023 0.0108 4.4546 1.00 1.00
swap 100, 000 85, 087 1, 376, 947 32.3656 0.0004 0.0262 4.1791 1.00 1.00
invert 10, 000 9, 112 2, 181, 838 478.893 0.0526 0.6978 1.9653 1.00 1.00

6x6
swap 10, 000 9, 676 97, 447 20.1420 0.0021 0.0088 5.5936 1.00 1.00
swap 100, 000 99, 583 1, 420, 307 28.5251 0.0003 0.0010 5.6097 1.00 1.00
invert 10, 000 9, 695 1, 821, 963 375.856 0.0388 0.8029 1.9693 1.00 1.00

7x7 swap 10, 000 9, 998 103, 048 20.6137 0.0020 0.0001 5.0521 1.00 1.00
invert 10, 000 9, 653 673, 460 139.534 0.0145 0.6575 1.9901 1.00 1.00

Almost linear increase of LO with samples: a large number of LO
Higher degree of clustering than random graphs: LO are
connected in dense local clusters with sparse interconnections
Many plateaus: difficult to exploit
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Degree Distributions
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Figure: Cumulative degree distribution of NLf swap for 10 000 samples
(black), 100 000 samples (blue) and 500 000 samples (red, when
available) for a) 4x4, b) 5x5 and c) 6x6.
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Figure: Cumulative degree distribution of NLf for 5x5 (black), 6x6 (blue)
and 7x7 (red) S-boxes with 10 000 samples for a) swap and b) invert.
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Degree Distribution Model

Can these degree distributions be represented with a model?
Degree distributions are tested with Kolmogorov-Smirnov test for
adequacy of power-law model and exponential model
Motivation: a power-law graph can be searched more rapidly
(the edges preferentially lead to high degree nodes)
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Degree Distributions

Kolmogorov-Smirnov test

Size Function Operator Samples Power-Law Exponential

4x4

Nlf swap 100, 000 0.0954 0.1547
Nlf swap 500, 000 0.0460 0.3215
Nlf invert 100, 000 0.0654 0.1234

5x5
Nlf swap 10, 000 0.0321 0.1325
Nlf swap 100, 000 0.0647 0.1795
Nlf invert 10, 000 0.0325 0.2154

6x6
NLf swap 10, 000 0.0990 0.2178
Nlf swap 100, 000 0.0217 0.3154
Nlf invert 10, 000 0.0645 0.3165

7x7 NLf swap 10, 000 0.0548 0.2981
Nlf invert 10, 000 0.0487 0.3152

Table: The p-values for the Kolmogorov-Smirnov hypothesis test with a
significance level of 0.1. If p − value > 0.1, the test fails to reject
power-law and exponential as plausible distribution models.
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Basin of Attraction Sizes

Exponential degree distributions do not provide a good
interpretation of local search behaviour as the power law –>
consider the size of the basins of attraction
Explore correlation between node degrees and the basin sizes
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Basin of Attraction Sizes

(a) (b)

(c) (d)

Figure: Correlation between the degree of local optima and their corresponding
basin sizes for a) 4x4, b) 5x5, c) 6x6 and d) 7x7 23 / 26
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Basin of Attraction Sizes

Nodes with high degree and small basin size –> large plateaus
with many small basins
Many small basins of comparable fitness –> hard to navigate the
landscape (little information for the search heuristic)
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Conclusions

Summary
First fitness-landscape analysis of S-boxes for cryptographic;
Almost every single initial solution finds a different local
optimum! –> many small basins of attraction;
Future experiments can combine Tabu lists or niching approaches
with restarts –> control the perturbation magnitude from the
previous starting point
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