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ABSTRACT
Ocean wave energy is a source of renewable energy that has gained

much attention for its potential to contribute significantly to meet-

ing the global energy demand. In this research, we investigate the

problem of maximising the energy delivered by farms of wave

energy converters (WEC’s). We consider state-of-the-art fully sub-

merged three-tether converters deployed in arrays. The goal of

this work is to use heuristic search to optimise the power output

of arrays in a size-constrained environment by configuring WEC

locations and the power-take-off (PTO) settings for each WEC.

Modelling the complex hydrodynamic interactions in wave farms is

expensive, which constrains search to only a few thousand model

evaluations. We explore a variety of heuristic approaches includ-

ing cooperative and hybrid methods. The effectiveness of these

approaches is assessed in two real wave scenarios (Sydney and

Perth) with farms of two different scales. We find that a combina-

tion of symmetric local search with Nelder-Mead Simplex direct

search combined with a back-tracking optimization strategy is able

to outperform previously defined search techniques by up to 3%.
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1 INTRODUCTION
Environmental concerns and declining costs are favouring the wide-

spread deployment of renewable electricity generation. Wave en-

ergy converters (WECs), in particular, offer strong potential for

growth because of their high capacity factors and energy densities

compared to other renewable energy technologies [6]. However,

WECs are relatively new technology, which presents design chal-

lenges in the development of individual converters and in the con-

figuration of farms consisting of arrays of WECs. The WEC model

considered in this research is similar to a new generation of CETO

systems that were introduced and developed by the Carnegie Clean

Energy company [14]. The CETO system is composed of an array

of fully submerged three-tether converters (buoys) [13]. The aim of

this research is to maximise the absorbed power of an array (farm)

of these buoys. In maximising the power produced by such an array

the key factors are [4]: (1) the layout of WECs in the sea, (2) the

power-takeoff (PTO) parameters for each WEC, (3) wave climate

(wave frequencies and directions) of a specific test site, and (4) the

number of WECs.

The combined search space for optimisingWECs placements and

PTO settings is non-linear and multi-modal. Furthermore, because

of complicated and extensive hydrodynamic interactions among

generators, the evaluation of each farm configuration is expensive,

taking several minutes in larger farms. These factors make the use

of smart and specialised meta-heuristics attractive for this problem.

One early work [3] used a simple uni-directional wave model to

compare a custom GA with an iterative Parabolic Intersection (PI)

method for placing 5 buoys. Both of these search methods deployed

a high number of evaluations (37000). A recent study by Ruiz et

al. [16] used another simple wave model to compare a specialised

GA, CMA-ES [10], and glow-worm optimisation [11] in placing

buoys at positions in a discrete grid. The study found that CMA-

ES converged faster than the other two methods, but ultimately

produced poorer-performing layouts. In other recent work, Wu

et al. [21] studied two EAs: a 1+1EA and CMA-ES for optimising

buoy’s positions in an array of fully submerged three-tether WECs

using a simplified uni-directional irregular wave model. That work

found that the 1+1EA with a simple mutation operator performed

better than CMA-ES. More recently, Neshat et al. [15] applied a

more detailed wave scenario (seven wave directions and 50 wave

frequencies) to evaluate a wide range of generic and custom EAs for

the buoy placement. This study found that a hybrid approach (local

search + Nelder-Mead) achieved better 4 and 16-buoy arrangements

in terms of power produced. However, the model used by that work

still embedded am artificial wave scenario. Moreover, the optimisa-

tion did not attempt to tune buoy PTO parameters to maximise the

power produced by each buoy.

https://doi.org/10.1145/3321707.3321806
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The optimisation of PTO parameters presents another dimension

for WEC farm optimisation. PTO parameters control how WECs

oscillate with the frequency of incoming waves. Maximum effi-

ciency is achieved when converters resonate with the sea waves.

However, maintaining a resonant condition is not easy because

real sea waves consist of multiple different frequencies [9]. In work

optimising the PTO damping of one converter (CETO 6), Ding et

al. [5] applied the maximum power point tracking (MPPT) con-

trol method which is a simple gradient-ascent algorithm for the

online-optimisation of the deployed WEC. The results show that

the MPPT damping controller can be more effective and robust

than a fixed-damping system. However, when the buoy number

is increased the optimisation process becomes more complicated

because of the hydrodynamic interactions between buoys. In later

work Abdelkhalik et al. [1] used a version of the hidden genes

genetic algorithm (HGGA) to control PTO parameters. While this

work raised the effective energy harvested the algorithm was not

compared to other methods.

In this paper, we develop a new hybrid Evolutionary framework

for simultaneously optimising both placement and PTO param-

eters of a wave farm. We study a broad range of meta-heuristic

approaches: (1) five well-known off-the-shelf EAs, (2) four alternat-

ing optimisation ideas, and (3) three hybrid optimisation algorithms.

Additionally, two new real wave scenarios from the southern coast

of Australia (Perth and Sydney) with a high granularity of wave

direction is used to evaluate and compare the performance of the

proposed methods. According to our optimisation results, a new

hybrid search heuristic combining symmetric local search with

Nelder-Mead simplex direct search, coupled with a backtracking

strategy outperforms other proposed optimisationmethods in terms

of the power output and computational time.

The rest of this paper is arranged as follows. Section 2 formulates

the WEC model. Section 3 gives the details of the optimisation

problem. The search methods are explained in Section 4 and a brief

characterisation of the fitness landscape is given. We present our

comparative studies and experimental results in Section 5. Finally,

Section 6 concludes this paper.

2 MODEL FORWAVE ENERGY CONVERTERS
In this paper, we consider a fully submerged three-tether buoy

model with each tether fastened to a converter installed on the

seabed. We assume an optimal tether angle of 55 degrees, which

was previously observed to maximise the extraction of energy from

from heave and surge motions [17]. Other features of the wave en-

ergy converters (WECs) used in this investigation, such as physical

dimensions and submergence depth, can be found in [15].

2.1 Power Model
In theWECmodel used here, linear wave theory is used to calculate

the system dynamics [18]. This model includes three different key

forces:

(1) The wave excitation force (Fexc,p (t)) combines the incident

and diffracted waves forces from generators in a fixed loca-

tion.

(2) The radiation force (Frad,p (t)), derived by the oscillating

body due to their motion independent of incident waves.
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Figure 1: Wave data for two test sites in Australia: (a) Sydney and
(b) Perth. These are: the directional wave rose (left) andwave scatter
diagram (right).

(3) Power take-off (PTO) force (Fpto,p (t)) is the control force
applied to the buoy from the PTO machinery.

Through these forces, the buoys can affect each other’s output

through hydrodynamic interactions. The complex nature of these

interactions, which can either be constructive or destructive, makes

the calculation of farm layout and PTO parameter settings a chal-

lenging optimisation problem.

The dynamic equation that describes a buoy motion in ocean

waves has the form:

Mp ÜXp (t) = Fexc,p (t) + Frad,p (t) + Fpto,p (t) (1)

whereMp is the mass matrix of a pth buoy, Xp (t) is the buoy dis-

placement expressed as surge, heave and sway. Finally, the power

take-off system is modeled as a linear spring-damper system. For

each mooring line two control factors are involved: the damping

Dpto and stiffness Kpto coefficients. Therefore, Equation (1) can be

written in a frequency domain for all WECs in a farm as:

F̂exc,Σ = ((MΣ +Aσ (ω))jω + Bσ (ω) −
Kpto,Σ

ω
j + Dpto,Σ) ÜXΣ (2)

The hydrodynamic parameters (AΣ(ω)) and BΣ(ω) ) are calculated
from the semi-analytical model described in [20]. In addition,Kpto,Σ
and Dpto,Σ are control factors, described above, which can be ad-

justed to maximise the power output of each buoy. The total power

output of the layout is computed by Equation (3):

PΣ =
1

4

( ˆF ∗exc,Σ ÜXΣ + ÜX ∗
ΣF̂exc,Σ) −

1

2

ÜX ∗
ΣB ÜX ∗

Σ (3)

Additionally, the q-factor (q) of the array measures the efficiency

of a entire wave farm as compared to the power output from N
isolated WECs. For a given layout, the q-factor can be calculated

as:

q =
P∑∑N
i=1 Pi

. (4)

q > 1 indicates constructive interference between WECs. The main

purpose of this study is maximising the total power output: PΣ for

N buoys within a constrained farm area.



A Hybrid Evolutionary Algorithm Framework for Optimising PTO-Position of WECsGECCO ’19, July 13–17, 2019, Prague, Czech Republic

3 OPTIMISATION PROBLEM FORMULATION
The formulation of the optimisation problem in this paper can be

declared as:

P∗Σ = argmaxX,Y,Kpto,Dpto
PΣ(X , Y ,Kpto,Dpto)

where PΣ(X , Y ,Kpto,Dpto) is the mean power obtained by place-

ments and PTO parameters of the buoys in a 2-D coordinate system

at x-positions: X = [x1, . . . ,xN ], y-positions: Y = [y1, . . . ,yN ] and
and corresponding Power Take-off parameters including Kpto =

[k1, . . . ,kN ] and Dpto = [d1, . . . ,dN ] . In the experiments here

N ∈ {4, 16}.

Constraints. All buoy locations (xi ,yi ) are constrained to a

square search space S = [xl ,xu ] × [yl ,yu ]: where xl = yl =

0 and xu = yu =
√
N ∗ 20000m. This allocates 20000m2

of farm-

area per-buoy. Moreover, a safety distance for maintenance ves-

sels must be maintained between buoys of at least 50 meters.

For spring and damper coefficients the boundary constraints are

dl = 5 × 10
4,du = 4 × 10

5
and kl = 1,ku = 5.5 × 10

5
. For any array

X , Y the sum-total violations of the inter-buoy distance calculated

in meters, is:

Sumdist =
∑N−1
i=1

∑N
j=i+1(dist((xi ,yi ), (x j ,yj )) − 50),

if dist((xi ,yi ), (x j ,yj )) < 50 else 0

where dist((xi ,yi ), (x j ,yj )) is the Euclidean distance between

buoys i and j. The penalty function of the power output (in Watts)

is computed by (Sumdist + 1)20. The penalty strongly encourages

feasible buoy placements. This penalty is also used to handle farm-

boundary constraints. For theDpto andKpto parameters, we handle

constraint violations by setting the parameter to the nearest valid

value.

Computational Resources. In this paper, we aim to compare a

various heuristic search methods, for 4 and 16 buoy arrays, in two

realistic wave scenarios. We allocate a time budget for each opti-

mization run of three days on dedicated platform with a 2.4GHz

Intel 6148 processor running 12 processes in parallel with 128GB

of RAM. Note, that where the search heuristic allows, we tune

algorithm settings to utilise this time budget. The software environ-

ment running the function evaluations and the search algorithm is

MATLAB R2017. On this platform, parallelisation provides up to 10

times speedup.

4 OPTIMISATION METHODS
In this research, our search methods employ three broad strategies.

The first strategy is to optimise all decision variables at once. This

means that for a 16-buoy farm we search in 16 × 4 dimensions

simultaneously. Here, we test five heuristics that apply this strategy.

The second strategy is to optimise the positions and PTO parameters

of all buoys in an alternating cooperative algorithm [2]. We test

four different methods that apply this strategy. Finally, the third

strategy, used in [15] is to place and optimise each buoy in sequence.

Here, we deploy this strategy for three hybrid EAs. Details of the

algorithms tested for each strategy follow.

4.1 Evolutionary Algorithms (All-at-once)
For the first strategy, five well-known off-the-shelf EAs are de-

ployed to simultaneously optimise all problem dimensions. (Po-

sitions+PTOs). These EAs are: (1) covariance matrix adaptation

evolutionary-strategy (CMA-ES) [10] with the default λ = 12, for

4-buoy layouts and and λ = 16 for 16-buoy layouts; (2) Differen-

tial Evolution (DE) [19], with parameter settings of λ = 50, 30,

respectively for 4 and 16-buoy layouts, and F = 0.5, Pcr = 0.5;

(3) a (1+1)EA [8] that mutates buoys’ location and PTO parame-

ters with a probability of 1/N using a normal distribution (σ =
0.1 × (Ub − Lb )); (4) Particle Swarm optimisation (PSO) [7], with

λ= DE settings, c1 = 1.5, c2 = 2,ω = 1 (linearly decreased); (5)

Nelder-Mead simplex direct search (NM) [12] is combined with a

mutation operator (Nelder-Mead+Mutation or NM-M). The muta-

tion operation is applied when the NM has converged to a solution

before exhausting its computational budget, so that it can explore

other parts of the solution-space.

4.2 Alternating optimisation methods
(Cooperative ideas)

Optimising both positions and PTO parameters of a WEC array

simultaneously can be challenging because of the high number of

dimensions and heterogeneous kinds of variables. There is a natural

division of variables into two subsets which might, at least in part,

be optimised separately. In this section, we describe a set of alter-

nating optimisation techniques which combine one evolutionary

algorithm idea such as CMA-ES, DE, and 1+1EA, with Nelder-Mead.

In addition, a cooperative, Dual-DE (DE+DE), algorithm is also

described. The details of each are given next.

4.2.1 (2+2)CMA-ES + Nelder-Mead. This alternating strategy

applies CMA-ES with µ = λ = 2 for iter = 25 iterations to optimise

buoy positions. Then the best solution is selected and NM is applied

to PTO settings for iter ∗ λ iterations. This improved setting is then

given to the CMA-ES population for another round of optimisation.

The CMA-ES and NM optimisation processes are alternated until

the time budget expires.

4.2.2 DE + Nelder-Mead. (DE-NM) This method alternates DE,

for buoy-positions, and NM for PTO parameters, using the same

iteration settings as above until the time budget runs out.

4.2.3 1+1EA + Nelder-Mead. (1+1EA-NM) This method alter-

nates a 1+1 EA, for buoy positions, and NM, for PTO parameters

until the time budget runs out. The iteration settings for the 1+1EA

are, respectively, 200 and 50 times, for 4 and 16-buoy layouts. The

same limits are also used for the NM optimisation rounds.

4.2.4 Dual-DE. This method uses the same parameter settings

as described for DE in subsection 4.1 to optimise both buoy positions

and PTO parameters in parallel. After iter iterations the improved

values from the positional and PTO optimisations are exchanged.

This iterative pattern continues until the time budget runs out.

4.3 Hybrid optimisation algorithms
In otherWEC-related research [15], it was found that applying local

search around the neighborhood of previously placed buoys could

help exploit constructive interactions between buoys. The following
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methods exploit this observation by placing and optimising the

position and PTO parameters of one buoy at a time.

4.3.1 Local Search + Nelder-Mead(LS-NM). This method places

buoys sequentially. The position of each buoy placement is opti-

mised by sampling at a normally-distributed random offset (σ =
70m) from the previous buoy position. The sampled location giving

the highest output is chosen. In our experiments we try three differ-

ent numbers of samples: (Ns = 2
4, 25 and 2

6
). After the best position

is selected, we optimise the PTO parameters of the last placed buoy

using Ns iterations of Nelder-Mead search. This process is repeated

until all buoys are placed. Note that, the Eval function of LS-NM is

parallelised on a per-wave-frequency basis. An example of 16-buoy

layout that is built by LS-NM(16s) and the sampling process used

to build it, is shown in Figure 4(a).

4.3.2 Symmetric Local Search + Nelder-Mead (SLS+NM(2D)).
This method also places one buoy at a time, but performs a more

systematic local search. The search starts by placing the first buoy in

the middle of the bottom of the field and then uses NM to optimise

the PTO parameters for 25 iterations.

For each subsequent buoy placement, eight local samples

are made in different sectors starting at angles: {anдles =
[0, 45, 90, ..., 315]} and bounded by a radial distance of between

50 (safe distance) and 50 + R′
. Within each sector a buoy position

is sampled uniformly.

After finding the best sample among the eight local samples, two

extra samples are done for increasing the resolution of the search

direction. The angles of these two samples are ± 15
o
plus the best

angle sample. The candidate position is then selected from the 8

original samples plus these two extra samples based on the buoy’s

energy output.

In the next step a check is done to see if the PTO optimisation

process for the previously placed buoy (using NM) had a high per-

centage improvement in its last step. A large improvement indicates

that there is scope to improve energy production, in this environ-

ment, by giving priority to PTO optimisation. Thus, if the last PTO

search step for the last buoy is greater than 0.01% then we optimise

PTO parameters for 25 iterations using NM. Otherwise we check to

see if the last position optimisation converged to within 0.01% and

if so, we optimise position instead. Otherwise we choose between

optimising PTO or position parameters for this buoy at random.

Note that this design assigns optimisation resources to PTO

parameters as a first priority because we have observed stronger

gains in output from tuning PTO parameters. Position parameters

are given priority only when the PTO parameters for the last buoy

were observed to be close to a local optimum.

Algorithm 1 describes this method in detail. In addition, experi-

ments were run with different starting buoy positions of were run

with bottom center (C), bottom right (BR) and a uniform random

position (r).

4.3.3 Symmetric Local Search + Nelder-Mead + Backtracking
(SLS-NM-B). The general idea of SLS-NM-B is like SLS-NM but with

two differences. The first difference is optimising the initial buoy

PTO settings by Nelder-Mead and then to share this configuration

with the next placed buoys for speeding up the search process and

saving computational time. Therefore, after applying symmetric

Algorithm 1 SLS + NM(2D)
1: procedure Symmetric Local Search + Nelder-Mead

2: Initialization
3: size =

√
N ∗ 20000 ▷ Farm size

4: angle = {0, 45, 90, . . . , 315 } ▷ symmetric samples angle

5: iters = Size([anдle]) ▷ Number of symmetric samples

6: S = { ⟨x1, y1, k1, d1 ⟩, . . . , ⟨xN , yN , kN , dN ⟩ } ▷ Positions&PTOs

7: ⟨S1, S2⟩ = Decompose(S) ▷ Decomposing

8: S1 = { ⟨x1, y1 ⟩, . . . , ⟨xN , yN ⟩ } = ⊥ ▷ Positions

9: S2 = { ⟨k1, d1 ⟩, . . . , ⟨kN , dN ⟩ } = ⊥ ▷ PTO parameters

10: S1(1) = { ⟨size/2, 0⟩ } ▷ first buoy position

11: S2(1) = { ⟨rand ×Maxk , rand ×Maxd ⟩ } ▷ first buoy k and d

12: energy = Eval([S1(1), S2(1)])
13: (S2(1), bestEnergy)=NM(S1(1), S2(1)) ▷ Optimise first buoy PTOs

14: (ImPTOrate)=ComputeImrate(bestEnergy, energy)
15: bestPosition = S1(1); bestPTO = S2(1)
16: ImPorate = 1 ▷ optimisation improvement rate Position

17: for i in [2, .., N ] do
18: bestEnergy = 0;

19: for j in [1, .., iters] do
20: (Samplej , energyj)=SymmetricSample(anglej, S1(i−1))
21: if Samplej is feasible & enerдyj > bestEnergy then
22: tPos = Samplej ▷ Temporary buoy position

23: bestEnergy = energyj
24: bestAngle = j
25: (Es1, Es2)=SymmetricSample(bestAngle ± 15, S1(i−1))
26: (S1(i ), energy)=FindbestS(tPos, Es1, Es2)
27: if ImPTOrate ≥ 0.01% then
28: PTO optimisation
29: (S2(i ), energy)=NM(bestPosition, S2(i−1), MaxEN )
30: (ImPTOrate)=ComputeImrate(bestEnergy, energy)
31: if energy > bestEnergy then
32: bestPTO = [S2(1), . . . , S2(i−1), S2(i )]
33: bestEnergy = energy
34: else if ImPorate ≥ 0.01% then
35: Position optimisation
36: (S1(i ), energy)=NM(S1(i), bestPTO, MaxEN )
37: (ImPorate)=ComputeImrate(bestEnergy, energy)
38: if energy > bestEnergy then
39: bestPosition = [S1(1), . . . , S1(i−1), S1(i )]
40: bestEnergy = energy
41: else
42: Optimise one of buoy Position or PTO randomly
43: return bestPosition, bestPTO, bestEnergy ▷ Final Layout

local sampling and finding the best position, Nelder-Mead search

tries to improve just the position (2D) of the new buoy.

The second contribution is applying a backtracking optimisation

idea (described in Algorithm 2). As the search process of SLS is

based on the greedy selection, we never come back to enhance

previous buoys’ attributes, so introducing backtracking can be ef-

fective for maximising total power output. Among all placed buoys

in the array, the worst round(N × 0.25) buoys in terms of power

are chosen and Nelder-Mead search is then used to optimise the

position (2D) and PTO settings (2D) of these buoys in a bi-level

optimisation process. This procedure is called SLS-NM-B1. We can

observe the performance of SLS-NM-B1 in Figure 4(b,c). This shows

how the eight symmetric samples are done and the effect of the

later backtracking process which refines buoy placements.
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Algorithm 2 Backtracking optimisation Algorithm (BOA)
1: procedure BOA (Position, PTOs, Energy )

2: Initialization
3: S1 = { ⟨x1, y1 ⟩, . . . , ⟨xN , yN ⟩ } = Position ▷ Positions

4: S2 = { ⟨k1, d1 ⟩, . . . , ⟨kN , dN ⟩ } = PTOs ▷ PTO parameters

5: energy = ([E1, E2, . . . , EN ]) = Energy ▷ Buoys energy

6: Nw = N /4
7: (WIndex)=FindWorst(energy, Nw ) ▷ Find worst buoys power

8: for i in [1, .., Nw ] do
9: PTO optimisation
10: (S2WIndex(i ), energyWIndex(i ))=NM(S2WIndex(i ), MaxEN )
11: Position optimisation
12: (S1WIndex(i ), energyWIndex(i ))=NM(S1WIndex(i), MaxEN )
13: return S1, S2, energy ▷ Final Layout
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Figure 2: Power landscape analysis of both real wave scenarios ((a,b)
Perth, (c,d) Sydney) for the best discovered 4-buoy layouts. The
spring-damping PTO configuration step size is 10000. The black cir-
cle shows the manufacturer’s PTO defaults for the predominant
wave frequency and the star, cross, circle, and Pentagon markers
present the k and dPTO settings of the best-discovered 4 buoys
layout. Note that the search space for buoy positions is multi-
modal [15], and that we only visualise a 2D slice of the 8D PTO op-
timisation space here without considering interactions with buoys’
positions.

A second version of this algorithm is proposed (SLS-NM-B2) to

evaluate the effectiveness of optimising both position and PTOs of

each buoy (4D) simultaneously instead of in a bi-level search. Other

details of the backtracking algorithm are the same.

5 EXPERIMENTS
This section first presents a brief landscape analysis for PTO param-

eters for two wave scenarios (Perth and Sydney). We then present

detailed results comparing the different search heuristics outlined

in the previous section.
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Figure 3: The comparison of the proposed algorithms performances
for 16-buoy layout in Perth wave model. The optimisation results
present the best solution per experiment. (10 independent runs per
each method)

5.1 Landscape analysis
For visualising the impact of PTO parameter optimisation, a simple

experiment was done. First of all, we optimised the buoy positions

for a 4-buoy layout using a manufacturer’s PTOs defaults (k =
407510 and d = 97412) for all converters for both the Perth and

Sydney test sites. The black circle in Figure 2 marks this default

PTO configuration. The energy produced by this layout is 402 kW

and 703 kW, respectively, for the Sydney and Perth wave climates.

Next, this obtained layout is evaluated where the buoy positions are

fixed and we grid-sample the energy produced when all four buoys

are assigned the same PTO parameters. This process produces the

contoured backgrounds shown in Figure 2. Finally, we optimise the

PTO parameters for each buoy independently and plot a marker

for each of the four buoys. These markers are roughly, but not

completely, coincident with the peak in the background power

landscape produced by optimising buoys’ PTO parameters in unison.

These markers are also at a different point to that produced by the

default setting. The best energy produced after optimisation has

improved to 420 kW and 720 kW respectively for Sydney and Perth.

5.2 Layout evaluations
In order to evaluate the effectiveness the proposed algorithms in

Sections 4.1, 4.2, and 4.3, we performed a systematic comparison

of the best layouts produced by each in two different real wave

scenarios (Perth and Sydney), and for two different numbers of

buoys (N = 4 and N = 16). Ten runs were performed for each

optimisation method and the best solutions were collected for each.

Figure 3 shows the box-and-whiskers plot for the power output

of the best solution per run for all search heuristics, for 16-buoy

layouts for the Perth wave scenario. The corresponding summary

statistics are presented in Table 1, and we illustrate the search

process for three cases in Figure 4. It can be seen that the best mean

layout performance is produced by both SLS-NM-B1 and SLS-NM-

B2. Additionally, the average optimisation results of SLS-NM with
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Table 1: The performance comparison of various heuristics for the 16-buoy case, based on maximum, median and mean power output layout
of the best solution per experiment.

Perth wave scenario (16-buoy)
Methods DE CMA-ES 1+1EA PSO NM-M DE-NM CMAES-NM 1+1EA-NM Dual-DE LS-NM16s LS-NM32s LS-NM64s SLS-NM(BR) SLS-NM(r) SLS-NM(C) SLS-NM-B1 SLS-NM-B2
Max 2652393 2680843 2644987 2289764 1893411 1845065 2059607 2125726 2453857 2554865 2613619 2626506 2723676 2716463 2709385 2739658 2741489
Min 2582793 2603920 2263180 1935340 1561609 1829109 1816940 1790521 2399372 2384981 2481663 2482512 2669097 2540090 2635628 2723886 2723470

Mean 2613938 2657924 2476649 2034625 1709664 1839680 1917947 1930481 2442276 2449269 2547633 2570651 2708267 2677821 2691542 2733105 2735345
Median 2609441 2661285 2476649 2011311 1696728 1840299 1902074 1902254 2453857 2442901 2545870 2584010 2711875 2692056 2701771 2733962 2736453
Std 21601.36 20844.29 109986.19 90666.26 96667.21 4261.50 76927.84 96648.77 20511.38 53689.15 40651.08 49948.44 14434.14 48718.95 24252.10 4426.12 4986.80

Sydney wave scenario (16-buoy)
Methods DE CMA-ES 1+1EA PSO NM-M DE-NM CMAES-NM 1+1EA-NM Dual-DE LS-NM16s LS-NM32s LS-NM64s SLS-NM(BR) SLS-NM(r) SLS-NM(C) SLS-NM-B1 SLS-NM-B2
Max 1544911 1551852 1550820 1498996 1393383 1372431 1524002 1541064 1488451 1525789 1542636 1551640 1556956 1550054 1534157 1559578 1564334
Min 1525043 1533453 1461996 1396223 1256857 1363834 1392057 1414872 1420995 1507479 1523444 1518276 1526266 1489493 1465638 1546369 1529929

Mean 1536324 1547951 1526867 1438377 1337175 1367502 1454505 1467659 1462382 1514404 1532215 1535923 1544706 1525152 1512476 1553629 1556447
Median 1538708 1549616 1531683 1435726 1338054 1367767 1441785 1467420 1465419 1513593 1528728 1535516 1548100 1523762 1518423 1553779 1558319
Std 6559.22 4996.61 25962.37 31262 41794.00 2508.76 47091.11 32623.75 14999.60 5125.37 7224.27 12944.20 10965.95 17681.23 18379.27 3293.68 8931.08

Figure 4: Three illustrations of the local search process for the placement of 16 buoys using LS-NM (part (a)) and SLS-NM-B2 (parts (b) and (c)).
Small yellow circles represent the final buoy positions. The coloured radial lines represent the neighbourhood sampling process. The black
diamonds in parts (b) and (c) represent the positions sampled by the backtracking algorithm. Part (a) (Power=1525780W, q-factor=0.89) and
(b) (Power= 1562138W, q-factor=0.91), optimise for the Sydney wave model; and part (c)(Power=2741489W, q-factor=0.972) is for Perth.

various first buoy locations are also competitive. Among these, the

best results arise from placing the first buoy in the bottom right

corner of the search space. This results in more total power output

because the farm layout this placement enables a greater number

of constructive buoy interactions. Of the standard EAs, CMA-ES

performs best. Interestingly, the performance of the alternating

approaches is not competitive compared with other methods.

Looking more closely at Table 1, in both wave scenarios, the SLS-

NM-B2 method significantly outperforms all but the SLS-NM-B1

method using the Wilcoxon rank-sum test (p < 0.01). The SLS-NM

performs better than CMA-ES for the Perth wave model, but is

no better than CMA-ES or DE for the, more challenging, Sydney

scenario. This can be seen in the box-plots for the Sydney scenario

shown in Figure 5. As a last observation, there appears to be some

positive impact from increasing the number of samples in the LS-

NM heuristic from 32 samples to 64.

Figure 6 shows the convergence of average fitness of the best

layout over time for all of the heuristics. Part (a) shows this conver-

gence for N =4 for the Perth model, part (b) is for N = 16 for Perth,

and part (c) is for N = 16 for Sydney. In all configurations, SLS-NM-B

converges very fast and still outperforms the other methods. To

sum up, the experimental results in Table 1 and Figure 6 reveal that

SLS-NM-B succeeds in attaining higher absorbed power as well as
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Figure 5: The comparison of the proposed algorithms’ performance
for 16-buoy layouts in Sydneywavemodel. The optimization results
present the best solution per experiment. (10 independent runs per
each method)

faster convergence speed. A second important remark about Fig-

ure 6 is that the alternating optimisation methods perform worse
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Figure 6: The convergence rate comparison for all proposed algorithms in both real wave scenarios(mean best layouts per generation).
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Figure 7: The convergence of spring-damping PTOs of 16 buoys by
CMA-ES (All-in-one) and Dual-DE (alternating style) methods in
Perth wave scenario. The black line shows the 16

thbuoy PTO set-
tings.

than the standard EAs, where both positions and PTO settings are

mixed as an all-in-one problem. One possible path to improving

these alternating methods in the future could be to shift some of

the budget for PTO optimisation to positional optimisation, which

appears to be more challenging.

Figure 7 tracks the convergence of just the PTO parameters

for each buoy during a run for CMA-ES (graphs on the left) and

Dual-DE optimisation (graphs on the right). It can be seen that

both methods are able to optimise power output over time and the

phased nature of the search in Dual-DE is visible in the graphs of the

parameter values. It can also be observed that the parameter values

for each buoy change non-monotonically as the best PTO settings

interact with buoy positions over the course of optimisation.

Figure 8 presents the most productive 4 and 16-buoy layouts

attained from all the runs in the two scenarios. The best 16-buoy

layouts are built by SLS-NM-B2 from the x-axis upwards with buoys

labelled, in the figure, by order of placement. In all layouts, the first

buoy is placed at the bottom right. The best 4-buoy layout of the

Perth wave model slopes diagonally upwards from right to left.

This layout was found by DE. For 16-buoys, the best SLS-NM-B2

configuration produces a maximum power output that is 2.26%

higher than the best CMA-ES configuration. Another observation

is that the layouts for Sydney place buoys far from each other. This

is likely to be due to the fact that the more diverse wave direc-

tions in Sydney make it harder to consistently exploit constructive

interactions from having buoys in closer proximity.

5.3 Hydrodynamic interpretation
Figure 9 demonstrates how the ocean wave power propagates

through the farm for each best-discovered solutions (4 and 16 buoy

layouts) for the Sydney and Perth sites. These landscapes model

interactions at the single dominant wave direction and frequency.

The wave resource at the Sydney and Perth sites is 30 and

35 kW/m, respectively. While these waves propagate through the

farm, the wave field is modified by the buoys and we can see that

the wave energy across the farm varies between 10 and 60 kW/m. It

can be seen that, in both sites, the best layout succeeds in extracting

much of the energy from the surrounding environment and, in the

case of Perth, the impact of extraction extends far out to sea beyond

the farm. The red areas near buoys are produced by interactions

of buoys with their local environment. It should be noted that,

though these areas might appear to be good candidate positions

for further buoy placements, destructive interference with other

buoys would produce sub-optimal results from such a placement.

Another observation is that at both sites at least one row of buoys

is perpendicular to the dominant wave direction (232.5 deg for the

Perth site, and 172.5 deg for the Sydney site). This indicates that

this wave direction can inform the initialisation of buoy positions

in optimising wave farm settings.

6 CONCLUSIONS
In this paper, we have described, evaluated, and systematically

compared twelve different heuristic methods for optimising layout

and PTO parameters for wave energy converter arrays. This study

included four alternating hybrid algorithms and three new methods
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Figure 8: The best-obtained 4 and 16-buoy layouts: (a) 4-buoy, Perth wave model, Power=719978.29(Watt), q-factor=1.013 by DE; (b) 4-buoy,
Sydney wave model, Power=423898.52(Watt), q-factor=0.98 by DE; (c) 16-buoy, Sydney, Power= 1559605, q-factor=0.903 by SLS-NM-B1; (d)
16-buoy, Sydney, Power=1564334.59, q-factor=0.916 by SLS-NM-B2; (e) 16-buoy, Perth, Power=2739657.74, q-factor=0.966 by SLS-NM-B1; (f)
16-buoy, Perth, Power=2741489.18, q-factor=0.972 by SLS-NM-B2 (2.26% more power than CMA-ES best layout).

Figure 9: The wave power around the best-founded 4 and 16-buoy
layouts by SLS-NM-B2; (a) 16 buoys, Perthwave scenario; (b) 4 buoys,
Perth; (c) 16 buoys, Sydney, and (d) 4 buoys, Sydney wave scenario.
Black circles and squares show the buoys placement and the search
space.

that are specialised to this domain. The results in this study indi-

cate that the search problem is challenging, with buoys inducing

changes in the local power landscape and hydro-dynamic interac-

tions occurring between buoys. The PTO optimisation results, also,

indicate at least some interaction between buoy placement and

optimal PTO settings for each buoy. Moreover, the hydrodynamic

modelling required for larger buoy layouts is expensive, which

constrains optimisation to take place with a limited number of

evaluations.

The best performing method is a new hybrid of a symmetric

local search combined with Nelder-Mead search and a backtracking

strategy. In our experiments, this method out-performed other

state-of-the-art algorithms, for 16-buoy layouts, in terms of power

production and in terms of speed-of-convergence.

Future work can further improve the fidelity of the environment

including considering a mix of buoy designs, tethering configu-

rations, farm-boundaries and sea-floor shapes. These additional

factors also create a more complex cost landscape, which opens the

way for multi-objective optimisation.
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APPENDIX WITH SUPPLEMENTARY
MATERIAL
We make use of the appendix in order to report on our preliminary

experiments on 4-buoy and 16-buoy layouts. In particular, we show

for the 4-buoy and 16-buoy scenario the relative similarity of good

layouts produced by very different approaches. Also, we show the

runtime performance as well as the final performance of various

approaches.

6.1 Layouts with 4 buoys
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Figure 10: The convergence rate comparison for all proposed algo-
rithms in Sydney wave scenarios with the mean best 4-buoy layout
per generation.

Algorithm 3 NM+Mutation

1: procedure Nelder-Mead + Mutation (all Dims)

2: Initialization
3: size =

√
N ∗ 20000 ▷ Farm size

4: S = {⟨x1,y1,k1,d1⟩, . . . , ⟨xN ,yN ,kN ,dN ⟩} ▷ Positions&PTOs
5: bestEnergy = 0 ▷ Best energy so far

6: bestLayout = [S] ▷ Best layout so far

7: EIRate = 0 ▷ Energy Improvement rate

8: Iterative search
9: while stillTime() do
10: (S′, energy)= NM_Search(S,MaxEval) ▷ Local search

11: EIRate= ComputeEIRate(energy, bestEnergy)
12: if energy > bestEnergy then
13: bestEnergy = energy ▷ Update energy
14: bestLayout = S′ ▷ Update layout
15: S = S′

16: if EIRate = 0 then
17: while (EIRate = 0) do
18: S′ = randn(σ ) + S ▷ new buoys Position&PTO
19: energy = Eval(S′)
20: EIRate= ComputeEIRate(energy, bestEnergy)
21: if energy > bestEnergy then
22: bestEnergy = energy ▷ Update energy

23: bestLayout = S′ ▷ Update layout

24: S = S′

25: return bestLayout, bestEnergy ▷ Final Layout
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Figure 11: The comparison of the proposed algorithms perfor-
mances for 4-buoy layouts in Perth wave model, the optimization
results present the best solution per experiment. (10 independent
runs per each method)

Algorithm 4 LS + NM

1: procedure Local Search + Nelder-Mead (2 Dims)

2: Initialization
3: size =

√
N ∗ 20000 ▷ Farm size

4: S = {⟨x1,y1,k1,d1⟩, . . . , ⟨xN ,yN ,kN ,dN ⟩} ▷ Positions&PTOs
5: ⟨S1, S2⟩ = Decompose(S) ▷ Decomposing

6: S1 = {⟨x1,y1⟩, . . . , ⟨xN ,yN ⟩} = ⊥ ▷ Positions

7: S2 = {⟨k1,d1⟩, . . . , ⟨kN ,dN ⟩} = ⊥ ▷ PTO parameters

8: S1(1) = {⟨size/2, 0⟩} ▷ first buoy position

9: S2(1) = {⟨rand ×Maxk , rand ×Maxd ⟩} ▷ first buoy k and d

10: (S2(1))=NM(S1(1), S2(1),MaxEN ) ▷ Optimise first buoy PTO

11: bestPosition = S1(1); bestPTO = S2(1)
12: for i in [2, ..,N ] do
13: iters = MaxSN ▷ Number of local samples

14: bestEnergy = 0;

15: Position Optimization
16: for j in [1, .., iters] do
17: while not feasible position do
18: tPos = randn(σ ) + S1(i−1) ▷ new buoy position

19: energy = Eval([S1(1), . . . , S1(i−1), tPos])
20: if energy > bestEnergy then
21: S1(i) = tPos ▷ Update last buoy position

22: bestPosition = [S1(1), . . . , S1(i−1), S1(i)]
23: bestEnergy = energy
24: PTO Optimization
25: (S2(i), energy)=NM(bestPosition, S2(i−1),MaxEN )
26: if energy > bestEnergy then
27: bestPTO = [S2(1), . . . , S2(i−1), S2(i)]
28: bestEnergy = energy
29: return bestPosition, bestPTO, bestEnergy ▷ Final Layout
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Table 2: The performance comparison of various heuristics for the 4-buoy case, based on maximum, median and mean power output layout
of the best solution per experiment (Std = standard deviation). In SLS-NM, the first buoy location in the search space is investigated and three
options are evaluated including: Bottom right (BR), Bottom Center (C) and random (r).

Perth wave scenario (4-buoy)
Methods DE CMA-ES 1+1EA PSO NM-M DE-NM CMAES-NM 1+1EA-NM Dual-DE LS-NM16s LS-NM32s LS-NM64s SLS-NM(BR) SLS-NM(r) SLS-NM(C) SLS-NM-B1
Max 719978 719879 719851 719913 719845 718321 718418 719049 719915 629667 633448 635676 713573 714041 703908 719663

Min 719878 708731 708731 708445 708690 713598 706583 717363 719851 546821 600825 615328 710449 694667 701964 719143

Mean 719921 718005 718491 715730 718914 717041 715364 718500 719882 599239 617694 622393 711976 704714 702821 719495

Median 719914 719851 719850 719107 719844 717380 716988 718653 719879 599921 617716 621512 711877 705196 702835 719554

Std 27.78 4331.96 3170.29 5078.80 3219.83 1509.80 3925.23 478.99 28.92 24069.76 9739.71 5585.69 835.78 6707.32 563.52 172.24

Sydney wave scenario (4-buoy)
Methods DE CMA-ES 1+1EA PSO NM-M DE-NM CMAES-NM 1+1EA-NM Dual-DE LS-NM16s LS-NM32s LS-NM64s SLS-NM(BR) SLS-NM(r) SLS-NM(C) SLS-NM-B1
Max 423898 423878 423847 423872 423806 423628 423485 423775 423899 419504 420549 420850 422619 422906 422878 422866

Min 423489 422046 422784 420883 423392 423255 422464 423397 423789 386137 415848 413949 420667 401907 420125 420724

Mean 423767 423516 423579 423218 423703 423406 423006 423602 423844 411155 418305 418210 421665 414943 421368 422335

Median 423808 423646 423636 423564 423710 423352 422988 423625 423840 415909 418262 418607 421798 416878 421421 422660

Std 140.96 492.19 285.52 859.18 119.82 125.47 294.73 132.68 37.9 11436.02 1523.88 2104.40 624.80 7100.91 771.31 638.80

Figure 12: Best 16-buoy layout by Local Search+Nelder-Mead (25

samples) (Perth wave model) Power=2613620(Watt).The red circles
show the constraint of the safe distance between buoys.

Algorithm 5 CMAES+NM

1: procedure (2+2)CMA-ES + Nelder-Mead (all Dims)

2: Initialization
3: size =

√
N ∗ 20000 ▷ Farm size

4: NPop = 2 ▷ Population size

5: S = {⟨x1,y1,k1,d1⟩, . . . , ⟨xN ,yN ,kN ,dN ⟩} ▷ Positions&PTOs
6: ⟨S1, S2⟩ = Decompose(S) ▷ Decomposing

7: S1 = {⟨x1,y1⟩, . . . , ⟨xN ,yN ⟩} = ⊥ ▷ Positions

8: S2 = {⟨k1,d1⟩, . . . , ⟨kN ,dN ⟩} = ⊥ ▷ PTO parameters

9: Pop = initPopulation({S1, S2},NPop)
10: bestEnergy = 0 ▷ Best energy so far

11: bestPosition = [S1] ▷ Best Position so far

12: bestPTO = [S2] ▷ Best PTO parameters so far

13: MaxEval = MaxIterC × NPop
14: Cooperative search
15: while stillTime() do
16: Position Optimization
17: (PopS1 , energies)= 2+2CMA-ES(Pop,MaxIterC)
18: ⟨bestPosition, bestIndex⟩= FindBest(PopS1 , energies)
19: PTO Optimization
20: (bestEnergy, bestPTO)= NM(Pop(bestIndex),MaxEval)
21: PopS2 (bestIndex) = bestPTO ▷ Update best solution

22: return bestPosition, bestPTO, bestEnergy
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Figure 13: The comparison of the proposed algorithms perfor-
mances for 4-buoy in Sydney wave model, the optimization results
present the best solution per experiment. (10 independent runs per
each method)
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Figure 14: The convergence of spring-damping PTOs of 4 buoys by
CMA-ES (All-in-one) in Perth wave scenario.
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