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Figure 1. The intuitions behind latent Dirichlet allocation. We assume that some number of “topics,” which are distributions over words,
exist for the whole collection (far left). Each document is assumed to be generated as follows. First choose a distribution over the topics (the
histogram at right); then, for each word, choose a topic assignment (the colored coins) and choose the word from the corresponding topic.
The topics and topic assignments in this flgure are illustrative—they are not fit from real data. See Figure 2 for topics fit from data.
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Figure 1. The intuiti behind latent Dirit ion. We assume that some number of “topics,” which are distributions over words,
exist for the whole collection (far left). Each is tobe as follows. First choose a distribution over the topics (the|
histogram at right); then, for each word, choose a topic assignment (the colored coins) and choose the word from the corresponding topic.
The topics and topic assignments in this figure are illustrative—they are not fit from real data. See Figure 2 for topics fit from data.
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a: document-topic density - with a higher q,
documents contain more topics

B: topic-word density - with a higher B, topics
contain most of the words in the corpus

k: number of topics
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documents each
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Success metric: Perplexity

Low perplexity means the language model
correctly guesses unseen words in test data.




mean k  std dev k mean a std deva mean B stddevp mean pp std devpp

GitHub

C 7373 h 4.35- 35.8 236.5 6.5
Ct++ 173.6 1.75 1.2 32.9 228.4 5.2
CSS 34.1 1.52 0.82 36.7 16 236.7 7.8
HTML 37 0.93 0.09 45.4 17.6 236.6 8.6
Java 76 1.81 0.89 44,6 37.1 226 3.1
JavaScript 19.9 1.59 0.57 2.4 18.2 238.1 2.7
Python 43.7 1.51 0.27 32.9 14.9 257.4 10.9
Ruby 28 241 14900891 37 213.9 6

all 499 81 1.93 1.8 50.3 32.4 234.2 13.3

Stack Overflow

C 377 343 0.95 55.1 202.9 4.5
C++ 337.6 206 333 61.8 199.3 3
CSS 196.2 24.2 1.01 15.3 184.1 2.7
HTML p I 181, 245 69.5 196.7 5.9
Java 349.8 49.1 0.85 8.2 223.9 2.5
JavaScript 252.8 34.5 NG04 4t 213.6 2
Python 295.8 47.3 1.1 78.6 229 4
Ruby 269.3 33.1 2.11 52.4 215.9 73
all 283.7 61.9 2.06 2.37 57.6 57.4 207.8 14.2

all 379.4 128.7 2 2.12 54.4 47.8 219.5 19.1
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apply 17 (16 + default)
configurations to all
corpora

predict best
configuration based on
corpus features
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GH:CSS,HTML

We can predict good configurations
for unseen corpora reliably. Our
predictions outperform the default
configuration by 14%, the best
tuned single configuration by 4%,
and they are less than 1% away
from the virtual best solver.
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