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Abstract—Manual engineering of high-performance implemen-
tations typically consumes many resources and requires in-depth
knowledge of the hardware. Compilers try to address these
problems; however, they are limited by design in what they can
do. To address this, we present CryptOpt, an automatic optimizer
for long stretches of straightline code. Experimental results across
eight hardware platforms show that CryptOpt achieves a speed-
up factor of up to 2.56 over current off-the-shelf compilers.

Index Terms—Automatic Performance Optimization, Search
Based Software Engineering, Local Search, Elliptic Curve Cryp-
tography

I. INTRODUCTION

Superscalar processors in recent years have become very
complex, and inherent CPU properties make it hard to reason
about the performance of a given assembly code [3], [10], [13],
[18], [22], [24]. As such, optimizing code performance for a
specific CPU microarchitecture is not trivial. Typical compiler
optimizations focus on control flow rather than long stretches
of straightline code [2]. Moreover, they often utilize peephole
optimizers [2], [7] with heuristics of replacement patterns to
statically optimize small sections of code.

We present CryptOpt, an automatic optimizer for long
stretches of straightline arithmetic code. CryptOpt recasts
compilation as a combinatorial optimization problem, with
runtime as the cost function, and utilizes techniques from the
field of search-based software engineering [16] to optimize.
We observe that rather simple techniques, such as a random
local search (RLS) [14], can produce faster code than current
off-the-shelf compilers, such as GCC and Clang, even when
used with their highest optimization settings. Two observations
are the key enablers for our approach. First, specializing in
straightline code simplifies code analysis. This simplicity, in
turn, enables CryptOpt to explore many optimization options,
such as reordering operations, where conventional compilers,
including GCC and Clang, tend to be more conservative.
Second, by actually running the generated code on the target
hardware we can optimize specifically for particular architec-
tures, while treating the CPU as a black box, removing the
need for complicated, error-prone, and lengthy modeling.

Cryptographic code typically follows the constant-time
programming paradigm to mitigate timing side-channel at-
tacks [4], [11], [21]. As such, it tends to contain long stretches
of straightline arithmetic, which we use as our first use
case: we use CryptOpt to generate high-performance crypto-
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graphic code,' optimized for eight CPU architectures, achiev-
ing speedups of up to 87% across platforms and up to 156%
in single cases. We also show that we can optimize on a per-
architecture level. That is, we can generate a solution on one
platform (optimized for the same platform) that outperforms
every other solution optimized on (and for) other platforms.

We believe that this technique can serve as a foundation
for future engineering of high-performance implementations.
Rather than employing reverse engineering and processor
modeling, we employ search algorithms and performance
measurements. That is, we simply run our optimizer on future
processors to generate optimized code with minimal effort.
CryptOpt is open-source, available at https://OxADE1A1DE.
github.io/CryptOpt.

II. OVERVIEW

We now sketch CryptOpt’s input language and outline how
it works at a high level. Then, we focus on how a user
would use it for their own architecture or for their own input
functions. We conclude this section with a detailed description
of the inner workings of CryptOpt.

A. Input Language

CryptOpt reads the description of an input function in an
intermediate language (see below). This input language is
sufficient to describe even large expressions including modular
arithmetic using bitwise operations. It even allows to materi-
alize ¢-nodes via a conditional-move (cmovznz) operation.

Variable =z
Binary integer b
Operand e == x|b
Operator o == | &|*|+|—|<<|=]|>>|~|

or | addcarryx | cmovznz | mulx |
static_cast | subborrowx

Expression FE returne | z,...,z < o(e,...,e); E

B. High-Level Concept

CryptOpt parses a function in the input language (specified
as a JSON file) into an internal representation (IR). From
this IR, CryptOpt derives a base implementation candidate in
assembly (blue in Figure 1). At a high level, CryptOpt uses a
RLS for optimizing the code. Figure 1 shows the basic step of

IThe full version of this paper shows that this code is also formally
verified [19].
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Fig. 1. CryptOpt high-level concept: Input specification is parsed into an IR
and assembly code. The initial IR is then mutated (shown in orange). The
performance of both candidates is then compared.

the RLS algorithm. Specifically, CryptOpt mutates the current
IR, changing the instruction selected for implementing an IR
operation or the order of operations to derive an alternative
assembly implementation (orange in Figure 1). Next, CryptOpt
measures the performance of both assembly implementations,
i.e. of the previous best and of the mutant, and keeps the
faster candidate. This mutate-measure-select step is repeated
iteratively, resulting in an optimized implementation of the
input function. While measuring the performance, CryptOpt
also checks the functional result of the candidates against a
C-compiled “ground truth.”

C. User Workflow

The current application of CryptOpt is for optimizing
cryptographic code. In particular, we focus on cryptographic
primitives such as finite-field arithmetic, as widely used in
elliptic-curve cryptography (e.g. in TLS and Bitcoin [8]) and
postquantum cryptography (though schemes like SIKE [5]).
To that end, we integrate with Fiat Cryptography [15], which
can generate both a JSON specification of a field-arithmetic
routine as well as a (decently optimized) C reference. In
this particular use case, CryptOpt can be invoked with
a “curve-method” combination, e.g. using the command
./CryptOpt —-bridge fiat —--curve curve25519
--method square. Fiat Cryptography is then consulted
internally to generate the required code. To use CryptOpt for
other functions, which are not produced by Fiat Cryptography,
the user should use the ——bridge manual parameter and
provide both a JSON specification of the input function
and a C reference of the same function as the ground truth,
e.g. ./CryptOpt —--bridge manual —--jsonFile
./example. json —-cFile ./example.c. Note that
CryptOpt is not a compiler plugin. Rather, CryptOpt is a
self-contained tool to generate x86-64 assembly from the
input specification outlined in Section II-A.

While optimizing, the user receives regular status updates
on the console, providing information on, e.g. the number
of instructions used to implement the function in the current
version, the number of memory spills, or the relative speedup
compared to the C-compiled ground truth. Further, we also
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Fig. 2. Optimization progress of SIKEp434—square on Intel Core i7-10710U,
showing the relative performance gain over Clang as a function of the number
of tested mutations.

generate a PDF file showing how the optimization progresses
over time. See Figure 2 for an example.

D. Detailed Internals

We now describe the inner workings of CryptOpt, shown
in Figure 3. The user invokes CryptOpt with the parameters
described in Section II-C. Upon invocation, the provided
parameters are parsed, and the control is handed to Optimizer.
Optimizer selects the required Bridge—a module which gen-
erates both the required function description in a JSON format
and a shared object (* . so-file) from the C reference, which is
used for correctness checks while measuring. Optimizer then
initializes Model, a component used as the single point of
truth for the IR. The initialization procedure of Model also
preprocesses the operations specified in the input description.
This includes
« Instruction scheduling: analyzing the data flow and subse-

quently generating an initial ordering of the operations.

« Instruction selection: assigning a template to each op-
eration specifying which x86-64 assembly instruction(s)
implement it.

After that, Optimizer invokes Assembler to assemble the

current IR. Assembler initializes Register Allocator, which

is the component maintaining the virtual state of the CPU

FLAGS register, general-purpose registers, and stack memory.

The Register Allocator is initialized with caller-save registers

holding (unknown) live values and calling-convention-based

registers, holding function parameters. Assembler processes
the operations from Model according to the current order,
producing the x86-64 assembly according to the assigned
template. While doing that, Assembler consults Register Allo-
cator to get empty registers or modify the storage locations of
intermediate values. Register Allocator will, in case it needs to
spill a variable to memory, get the next operations from Model
to determine which value is most suitable to spill. Assembler
eventually returns the x86-64 assembly string to Optimizer,
which stores it temporarily. Optimizer then invokes the mutate
function on Model. This will (randomly) change the IR in
one of two ways: change the order in which the operations
are implemented, or change the template assigned to one of
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Fig. 3. Component diagram of CryptOpt.

the operations. Optimizer will then invoke Assembler again
to generate the assembly code of the mutated IR. Optimizer
then uses MeasureSuite to compare the performance of the
implementation of the original IR with that of the mutated
IR. MeasureSuite uses AssemblyLine [1] to assemble two
x86-64 assembly codes and perform a version of the R3-
validation [9], as outlined in Section III. Finally, MeasureSuite
returns the measurement results to Optimizer, which compares
the results and decides whether to accept the mutated IR as the
new base implementation. Otherwise, Optimizer discards the
mutation and proceeds to test another one. After a predefined
number of mutations has been tried, CryptOpt writes the last
base implementation to disk.

III. MEASUREMENT

Measuring precise execution times of short stretches of code
is challenging because it is affected by a large number of noise
factors [3], [10], [18], [22], [24]. Bokhari et al. [9] compared
validation approaches in the context of energy-consumption
optimization. We adopt their R3-validation approach with two
modifications. First, we do not restart the computer after each
evaluation, because we do not observe any measurement drift
over time. Second, we use a random scheduling of program
variants instead of following a strict order of measurements to
reduce effects of learned execution orders by the CPU.

Recall that we need to assess which of the two candidate
x86-64 assembly implementations is faster. Our measurement
procedure randomly selects one candidate and measures it in
a tight loop. Then, we measure the check function (ground
truth) in a tight loop. The number of iterations in each of
those loops depends on the measured code: Slow stretches are
repeated fewer times than fast stretches. With this dynamic,
we can skew the nominal number of cycles measured into a

TABLE I
OVERVIEW OF TARGET MACHINES USED IN THE EXPERIMENTS

CPU p-arch Mainboard

AMD Ryzen Thead- Zen I ASUS ROG STRIX X399-E Gaming
ripper 1900X

AMD Ryzen 7 5800X Zen 3 Gigabyte B550 AORUS ELITE V2
AMD Ryzen 9 5950X Zen 3 Gigabyte X570 GAMING X

Intel Core i7-6770HQ  Skylake-H Intel NUC6i7KYB

Intel Core i7-10710U  Comet Lake-U Intel NUC10i7FNB

Intel Core i9-10900K  Comet Lake-S  Gigabyte H470 HD3

Intel Core i7-11700KF  Rocket Lake-S  ASRock Z590 Pro4

Intel Core i9-12900KF  Alder Lake-S ~ Micro-Star PRO Z690-A Wifi (MS-7D25)

range where the performance counter gives enough granularity.
Empirically, aiming for roughly 10000 cycles provides a
good trade-off in terms of sensitivity because it amplifies the
execution time differences enough to be detected, yet is robust
enough not to be misled by the environmental factors.

For stability, we repeat this procedure multiple times, each
with randomly selected input values and compare the median
of these experiments to determine which of the candidates to
keep. We empirically find that 31 repetitions provide suffi-
ciently stable results on our systems. The user can adjust the
number to suit the running environment, e.g. a higher number
may be required for noisy systems.

IV. CRYPTOPT IN THE REAL WORLD

Evaluation setup. We evaluate CryptOpt on eight different
platforms, summarized in Table I. On each machine, we
generate x86-64 assembly code with CryptOpt for the multiply
and square methods of nine different prime fields from Fiat
Cryptography.

Optimization process. Optimization takes between 36 and 70
wall-clock hours to generate those 18 primitives, depending on



the machine. The length of the produced code depends on the
compiled primitive and varies from fewer than 100 instructions
to almost 1000 instructions. The average length of the best
implementations generated is shown in Table II.

TABLE 11
AVERAGE INSTRUCTION COUNT, ROUNDED TO NEAREST INTEGER

Primitive Multiply ~ Square
Curve25519 170 121
NIST P-224 221 219
NIST P-256 204 200
NIST P-384 710 698
SIKEp434 986 965
Curve448 588 405
NIST P-521 542 338
Poly1305 76 61
secp256k1 233 224

Optimized code performance. Table III shows the geometric
mean over those eight platforms of the speedup of CryptOpt-
generated code vs. machine code generated by off-the-shelf
compilers Clang version 14.0.0 and GCC version 11.3.0 at
the highest optimization settings (-03 -mtune=native
-march=native).

Side-channel resistance. Code generated by Fiat Cryp-
tography is timing-side-channel-secure. CryptOpt will only
optimize with different instruction scheduling, instruction se-
lection, and register allocation. CryptOpt will not change
algorithmic structures’>. We implement Fiat IR’s cmovznz-
operation with Intel’s dedicated cmovCC instruction. As such,
code based on Fiat Cryptography optimized with CryptOpt is
inherently timing-side-channel-secure.

V. RELATED WORK

Next, we describe other work in the broader realm of au-
tomatically optimizing code. We start with superoptimization,
which targets the smallest pieces of code, and turn our focus
then onto the field of peephole optimization, which considers
larger chunks of instructions.

Superoptimization. In 1987, Henry Massalin coined the
term ‘“‘superoptimizer” to describe his tool for exhaustive
enumeration of all possible programs to implement a given
function [20]. Because exhaustive enumeration can require a
huge computational effort, the key idea making this feasible is
the use of a probabilistic test set, which rejects the majority of
incorrect candidates. His superoptimizer was able to generate
programs of 12 instructions after several hours of running
(on a 16MHz 68020 computer). Since then, superoptimizers
have evolved significantly: Souper [25] can synthesize new
optimizations on the LLVM IR, but as such they cannot exploit
target-specific properties. Denali [17] uses solvers to generate
provably shortest programs, but it can only be applied to rather
short program sequences in the range of tens of instructions.
STOKE [26] and its extensions [27]-[29] can synthesize new

2We do optimize with simple forms of strength reduction such as replacing
multiplication by constants with a combination of additions and bit-shifts.

TABLE III
GEOMETRIC MEANS OF CRYPTOPT VS. OFF-THE-SHELF COMPILERS.

Multiply
GCC

Square
GCC

Curve

Curve25519
P-224
P-256
P-384
SIKEp434
Curved48
P-521
Poly1305
secp256k1

Clang Clang

programs from scratch and optimize them, only focusing on
very small kernels of loops.

Peephole optimization. Instead of synthesizing new and
optimal very short programs, peephole optimizers use a sliding
window on instructions (the peephole) and replace sets of
existing instructions with more performant alternatives [2], [7],
[12]. The replacement is usually done based on a predefined
rule set (applying only to short instruction sequences), which
itself is based on heuristics for estimating which set of
instructions is likely to be more performant or shorter than
an alternative.

One possible next step can be to find those heuristics
automatically [6], [23] and then to apply this new knowledge
to the target code. However, those rules are still applied
statically, i.e. without taking the actual effects on runtime into
account, and they are typically applied over the entire code.

With CryptOpt, we overcome those limitations by first only
applying a mutation locally and second by measuring the (side)
effects of every mutation.

VI. SUMMARY AND OUTLOOK

We present CryptOpt, a tool for generating optimized as-
sembly code by combining simple techniques. As present,
CryptOpt tackles distinctive characteristics of straightline
cryptographic code, achieving a significant improvement over
mainstream compilers. In the future, we expect that these
techniques can be generalized to other domains of compilation.
Moreover, it would be interesting to test if replacing RLS
with more advanced optimization strategies would improve
CryptOpt’s run time and results.
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