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Abstract17

Problems with multiple interdependent components offer a better rep-18

resentation of the real-world situations where globally optimal solutions19

are preferred over optimal solutions for the individual components. One20

such model is the Travelling Thief Problem (TTP); while it may of-21

fer a better benchmarking alternative to the standard models, only one22

form of inter-component dependency is investigated. The goal of this23

paper is to study the impact of different models of dependency on24

the fitness landscape using performance prediction models (regression25

analysis). To conduct the analysis, we consider a generalised model of26

the TTP, where the dependencies between the two components of the27

problem are tunable through problem features. We use regression trees28

to predict the instance difficulty using an efficient Memetic Algorithm29

that is agnostic to the domain knowledge to avoid any bias. We re-30

port all the decision trees resulting from the regression model, which31
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is the core in understanding the relationship between the dependen-32

cies (represented by the features) and problem difficulty (represented by33

the runtime). The regression model was able to predict the expected34

runtime of the algorithm based on the problem features. Further-35

more, the results show that the contribution of the item value drop36

dependency is significantly higher than the velocity change dependency.37

Keywords: Runtime regression analysis, Evolutionary Algorithms, Travelling38

Thief Problem39

1 Introduction40

Tackling real-world problems can be very challenging compared to standard41

benchmarking integer programming models [17, 33, 34, 37]. Multiple aspects42

contribute to creating this gap, such as bad modelling practices (e.g., over-43

simplification, linearisation), intractability (high computational complexity of44

solution methods), hard and soft constraints (heavy constraints...), external45

factors (stochastic environment, uncertainty about data), and composition of46

interdependent (mutually dependent) sub-problems [4, 28].47

In this paper, we are interested in the last aspect, namely, dependencies48

between the problem’s components (sub-problems). This type of problems are49

referred to as problems with multiple interdependent components [2] or multi-50

hard problems [32], as the components are NP-hard when tackled separately.51

To the best of our knowledge, the first benchmark model covering this aspect is52

the Travelling Thief Problem (TTP), introduced by Bonyadi et al [2] as a com-53

bination of the Travelling Salesman Problem and the Knapsack Problem. The54

model was then simplified by Polyakovskiy et al [31], and a large dataset of in-55

stances was published. Furthermore, an extension has been proposed in Chand56

and Wagner [5] where multiple thieves are considered.57

The standard TTP formulation in [31] considers a combination of the Trav-58

elling Salesman Problem (TSP) and the Knapsack Problem (KP). The problem59

considers a set of items scattered in different cities where a thief should visit60

each city once, picking some items on the way and returning to the first city,61

while trying to maximise the thief’s gain. The dependency in this formulation62

is modelled in a number of manners, such as:63

• Penalising the travelling time by tying the thief’s velocity with the knapsack64

load (standard model [31]),65

• Decreasing the value of items as the thief progresses in his journey,66

• A combination of the above (bi-objective TTP model [2]).67

Note that because the final aim is to cover some aspects from real-world68

problems, both dependency types were designed to reflect realistic situations.69

First, the load-velocity dependency can be adapted to reflect the relationship70

between the load and fuel consumption in the transportation of goods [16].71
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Second, the value drop dependency can have even more realistic and impor-72

tant applications within the shipping sector, such as the transportation of73

perishable goods [7, 14].74

Since it was introduced, the TTP received the attention of researchers75

from the fields of evolutionary computation, metaheuristics and operations76

research, mainly due to the fact that the problem is easy to understand,77

yet challenging to solve. Several papers proposed heuristic solution meth-78

ods [9, 10, 26, 38], and fewer ones tried to analyse the problem empirically79

and theoretically [11, 42, 43]. These analyses focus on the impact of problem80

features, with little to no attention to the impact of the dependencies between81

the components. Furthermore, all of the above-mentioned works only consider82

the velocity change constraint, which is probably the result of the standard83

TTP library only supporting this dependency.84

The gap we are trying to close with this work is the analysis of the impact85

of the above-mentioned dependency formulations and investigation of their86

impact on the difficulty of tackling the problem. To conduct the analysis,87

we consider cost models as a tool to empirically analyse the difficulty of the88

generalised TTP model, that embeds all these dependency models. The novelty89

here considers imposing that the value of a picked item drops by time, besides90

the evaluation of the difficulty of problem instances is done using a Memetic91

Algorithm based on MA2B [9]. The findings show that the item value drop92

dependency significantly impacts the difficulty of solving the TTP instances.93

More importantly, according to our analysis, its impact is stronger than the94

velocity change constraint.95

In Section 2, we provide a background information with a brief literature96

review on the algorithms and analyses for the TTP and cost model-based97

fitness landscape analysis. Section 3 introduces the methodology adopted to98

analyse the problem, including the feature-based analysis and the adopted99

algorithm. In Section 4 describes the experiments and discusses the results.100

Finally, Section 5 summarises the findings and concludes the paper.101

2 Background and Related Works102

2.1 The Travelling Thief Problem103

The standard TTP can be informally stated as follows: Given are a set of cities104

and a set of items distributed among these cities. Each item is defined by its105

individual profit and weight. A thief must visit all the cities exactly once, pick106

some items while travelling, and return to the starting city. The knapsack has107

a limited capacity, which should not be exceeded. We also consider a knapsack108

renting rate (per time unit) which determines the amount that the thief must109

pay at the end of the journey.110

What makes the two components of the TTP interdependent is the veloc-111

ity of the thief, because it changes according to the weight of the knapsack.112

Specifically, the heavier the knapsack gets, the slower the thief becomes. The113
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objective is to maximise the total gain function defined as the total profit,114

minus the cost of the journey.115

The interdependence, such as the one present in the TTP, can reflect the116

characteristics and the complexity of real-world problems [2]. For this rea-117

son, several authors have addressed the TTP by applying different methods.118

Polyakovskiy et al [31] presented the first heuristics for solving the TTP, gen-119

erating a TSP tour using the classical Chained Lin–Kernighan heuristic [1]120

and with the fixed tour they applied some packing heuristics for improving the121

solution, such as Random Local Search (RLS) and (1+1)-EA.122

As the problem is NP-hard and the objective function is non-linear, many123

researchers focused on (meta-)heuristic algorithms. The work proposed by124

Bonyadi et al [3] introduces a method named CoSolver, which is inspired by125

cooperative coevolution. The framework consists in splitting the problem into126

sub-problems and tackling them in a parallel and synchronous fashion. Mei127

et al [26] proposed a fast Memetic Algorithm called MATLS, which embeds128

multiple complexity reduction methods to solve large scale TTP instances.129

Faulkner et al [13] explored multiple operators for optimising the packing plan130

combining them in a number of simple and complex heuristics. The work in131

[9] proposed and compared two heuristic algorithms, a Memetic Algorithm132

(MA2B) and Simulated Annealing-based algorithm (CS2SA) which resulted133

in competitive performances for various problem sizes. Wagner [38] investi-134

gated the use of swarm intelligence approaches with two different TSP-specific135

local search operators and of “boosting” TTP solutions using TTP-specific136

local search. Two algorithms were proposed in [10] based on combining the137

2-OPT steepest ascent hill climbing algorithm for the TSP component and138

the simulated annealing metaheuristic for the KP component, named CS2SA*139

and CS2SA-R. The obtained results showed that the proposed algorithms are140

competitive in many TTP instances.141

In [39] the authors created a dataset with performance data of 21 TTP142

algorithms on the full original set of 9720 TTP instances. They also defined143

55 characteristics for TTP instances that can be used to select the best algo-144

rithm on a per-instance basis, and they used these algorithms and features to145

construct algorithm portfolios for TTP in order to outperform the single best146

algorithm.147

Recently, the authors in [29] investigated the inter-dependency of the TSP148

and the KP by means of quality diversity (QD) approaches, conducting ex-149

perimental studies that show the usefulness of using the QD approach applied150

to the TTP. Besides, the authors introduced a MAP-Elite based evolutionary151

algorithm called BMBEA, using well-known TSP and KP search operators.152

In the MAP-Elite solutions compete with each other to survive. Their results153

showed that QD approach can improve the best-known solution for a wide154

range of TTP instances.155
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2.2 Empirical algorithm analysis156

Fitness landscapes represents the association between the search process and157

the fitness space [41]. A heuristic algorithm can be seen as a strategy for158

navigating the solution landscape structure in the search for an optimal so-159

lution. Thus, fitness landscape analysis is a set of tools and methods used160

to investigate the dynamics of heuristic search algorithms applied for specific161

optimisation problems [22].162

Cost models are fitness landscapes methods that can help predicting the163

performance of algorithms by identifying features that make a problem more164

or less difficult to solve. These models can be expressed as linear, multiple re-165

gression models [25], decision trees [30], or other models of features and search166

cost; also, some models are more amendable to human interpretation than167

others. To aid interpretability, the features are extracted from the problem168

structure and the model can at times explain their influence in the difficulty169

level during the search [11].170

Some authors have presented fitness landscape analysis for several prob-171

lems, as described in [44]. The work developed by [27] studied the relation172

between features of fitness landscapes and recombination and/or mutation173

operators for the Quadratic assignment problems. The authors in [35, 36] anal-174

ysed the fitness landscape of a dynamic optimisation problem, investigating175

the influence on the performance of the algorithm.176

The work proposed by [18] designed a prediction model for the algorithmic177

performance of CMA-ES variants by using a random forest regression model178

based on exploratory features of fitness landscapes. Also, the authors in [24]179

presented a spatial-domain fitness landscape analysis framework to visualise180

the fitness landscapes regarding a specific combinatorial optimisation prob-181

lem and evaluate its properties. By extracting characteristics of combinatorial182

optimisation problems allowed study the behaviour of algorithms effectively.183

Recently, the paper in [21] focused on the adaptability landscape features184

of optimisation problems by applying differential evolution algorithm. The185

authors presented a quantitative analysis of the fitness distance correlation186

information, evaluating the difficulty of solving the problem.187

Some papers explored TTP using fitness landscape analysis. In [43] the188

authors considered local search operators and investigated the fitness landscape189

characteristics of some smaller instances of the TTP. The local search operators190

included 2-opt, Insertion, Bitflip and Exchange and metaheuristics included191

multi-start local search, iterated local search and genetic local search.192

Another recent work in [12] investigated 3 dependency models of the TTP,193

in addition to a dependency-free model for comparison purposes. The authors194

used local optima networks as a fitness landscape analysis tool to study the195

difficulty of the search landscape for these dependency models. The results196

show that the dependency-free landscape is the most difficult to navigate based197

on the basin sizes and their correlation to the fitnesses. Such a result is diffi-198

cult to interpret as it is expected that the dependencies create more difficult199
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instances [4]. The authors speculated that this result is due to the join neigh-200

bourhood search algorithm, an algorithm that joins two neighbourhood sets201

into one, which creates an additional complexity even for the dependency-free202

model.203

3 Proposed approach204

3.1 Generalised TTP model205

Herein, we provide the mathematical formulation of the generalised TTP,206

based on the standard TTP as introduced in Section 2, and the TTP2 formula-207

tion in [2]. The model embeds two types of dependency, and is conceived such208

that the strength of these dependencies is tunable through problem features.209

Input data210

We define the following problem input parameters:211

• N = {1, . . . , n} is the set of labels, representing the cities to be visited,212

• {dij} is the matrix of distances between these cities,213

• M = {1, . . . ,m} is a set of labels corresponding to the items scattered among214

cities,215

• pk and wk represent the profit and weight of an item k ∈ M , respectively,216

• W is the knapsack capacity,217

• R is the knapsack renting rate, which is used to determine the cost of the218

journey,219

• vmax and vmin represent the maximum and minimum velocities, respectively.220

• A = {A1, . . . , Am} denotes the availability vector, such that Ak ∈ {1, . . . , n}221

contains the reference to the city that contains the item k.222

Decision variables223

A TTP solution is represented using two components: The first is the tour224

X = (x1, . . . , xn), a vector containing the ordered list of cities, which is encoded225

as a permutation. The second is the picking plan Z = (z1, . . . , zm), a binary226

vector representing the states of items, where 1 is associated to the packed227

items, and 0 to the unpacked ones.228

Interdependencies229

What makes the two components of the TTP interdependent is the velocity230

of the thief which changes according to the weight of the knapsack. Therefore,231

the velocity at city xi is defined in Equation 1.232

vxi = vmax −
(
vmax − vmin

W

)
× wxi

(1)

where wxi
the weight of the knapsack at city xi.233

In addition to the velocity change dependency in Equation 1, we add a234

second dependency on the value of items. This is achieved by imposing that235
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the value of a picked item k drops by time from its initial value pk to pfinalk236

following Equation 2.237

pfinalk = pk ×D⌈Tk
Q ⌉

r (2)

where Dr is the item value dropping rate, pk is the initial value of item k,238

Tk is the carrying time of item k, and Q is a constant calculated as shown in239

Equation 3.240

Q = Tmin
ln(Dr)

ln
(

Pmin

2×Pmax

) (3)

Equation 3 seeks to satisfy Pmax × D
Tk
Q
r = 1

2 × Pmin, where Pmax and Pmin241

represent the maximum and minimum item values, respectively, while Tmin is242

the minimum travelling time.243

Furthermore, the dependencies in the Generalised TTP model are tunable244

through the parameters vmin ∈ [0, vmax] and Dr ∈ [0, 1], where:245

• The velocity drop dependency is controlled through vmin. When vmin =246

vmax, this dependency is cancelled as the thief will be always travelling at247

the maximum velocity vmax independently from the knapsack load.248

• The item value drop dependency is controlled through Dr. Similarly, this249

dependency is deactivated by setting Dr = 1.250

Based on the above, the proposed model covers all dependency models251

in [12], including the standard TTP.252

There are two special cases to consider: (1) Setting vmin = 0 can lead to a253

velocity of 0. Based on Equation 1, we have vx = vmax(1 − wx

W ), which leads254

to the thief remaining stationary if the knapsack load reaches the maximum255

capacity W . (2) Setting Dr = 0 makes all the picked items valueless in the end256

as pfinalk = 0. Based on these remarks, the considered values for vmin and Dr257

are always chosen strictly positive in our empirical study.258

Note that it is difficult to predict how a change in dependency feature259

values, e.g., lower values of Dr and vmin, will impact the difficulty of the260

problem instances. This partially depends on the algorithm used to tackle the261

problem.262

To illustrate how these interdependencies work, we consider a TTP instance263

with 6 cities and 20 items, and a potential solution as shown in Figure 1. Note264

that this is a simplified illustration as the distances, item values and weights265

among other problem parameters are not shown for simplicity. Following the266

velocity change dependency, assuming that vmin < vmax, the velocity will267

start decreasing from city B where items 1 and 4 are picked, passing through268

city C does not influence the velocity as no items are picked, and so on. Now269

considering the item value drop dependency, the items 1 and 4 lose most of270

their value as they are carried for almost the entire journey, while item 17 loses271

the least of its initial value.272
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Figure 1: A simplified illustration of a TTP instance and solution. The circles
represent the cities, labelled by letters from A to F . The rectangles represent
the items associated to each city (except the first), labelled by numbers from
1 to 20. The dashed arrows form the route, and the highlighted rectangles
represent the picked items.

Objective function273

To focus on the dependency analysis, we consider a linear combination of the274

total profit and cost of the journey as shown in Equation 4.275

Maximise G(X,Z) =
∑
m

pfinalm × zm −R× (

n−1∑
i=1

dxi,xi+1

vxi

+
dxn,x1

vxn

) (4)

Subject to:∑
m

wm × zm ≤ W (5)

xi ∈ Z+ ∀i ∈ {1, . . . , n} (6)
zk ∈ {0, 1} ∀k ∈ {1, . . . ,m} (7)

where txi,xi+1
=

dxi,xi+1

vxi
is the travel time from xi to xi+1.276

As mentioned earlier, the introduction of the velocity change and item277

value drop dependencies leads to a non-linear objective function. Note that278

the non-linearity exists in the first term of the equation as well, since pfinalk279

has a non-linear formulation (Eq. 2) and depends on z. This increases the280

difficulty of the problem as it cannot be solved using standard MILP methods,281

and rather requires an ad-hod solution.282
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3.2 Memetic Algorithm283

As a baseline for our analysis, we consider the memetic algorithm presented284

in Algorithm 11. The algorithm uses genetic operators (tournament selection285

and crossover) combined with a hill climbing local search algorithm to evolve a286

population of candidate solutions iteratively. The implementation is based on287

the Memetic Algorithm MA2B initially designed for the standard TTP [9], but288

differs from the original implementation by removing all domain knowledge289

from the logic of the algorithm.290

Algorithm 1 Memetic Algorithm for the Generalised TTP
1: P ← ∅
2: T ← 0
3: for i ∈ {0, . . . , Npop} do
4: Si ← {rand_perm(n), rand_bin(m)} ▷ Random initialisation
5: G(Si) ▷ Evaluate
6: T ← T + 1
7: {Si, T} ← hill_climbing(Si, T ) ▷ Local search improvement
8: P ← P ∪ Si
9: end for

10: P ← sort(P )
11: Sbsf ← {rand_perm(n), rand_bin(m)}
12: repeat
13: if G(P1) > G(Sbsf ) then
14: Sbsf ← P1

15: end if
16: Q← ∅
17: for i ∈ {0, . . . , Noffspring} do
18: {p1, p2} ← tournament(P,Ntournament) ▷ Select parent solutions
19: Snew ← crossover(p1, p2) ▷ Crossover
20: G(Snew)
21: T ← T + 1
22: if random(0, 1) < RLS then
23: {Snew, T} ← hill_climbing(Snew, T ) ▷ Local search improvement
24: end if
25: if Snew /∈ Q then ▷ add to offspring population
26: Q← Q ∪ {Snew}
27: else ▷ Generate new solution to reduce premature convergence
28: Srand ← {rand_perm(n), rand_bin(m)}
29: {Srand, T} ← hill_climbing(Srand, T )
30: Q← Q ∪ {Srand} ▷ add to offspring population
31: end if
32: end for
33: P ′ ← sort(P ∪Q)
34: P ← {P ′

1, . . . , P
′
Npop
}

35: until T ≥ Tmax ∨ g∗−G(P1)
g∗ ≤ ϵ

1The implementation of the memetic algorithm is done in Java based on the codes available
at https://github.com/yafrani/ttplab

https://github.com/yafrani/ttplab
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The motivation behind choosing a Memetic Algorithm is due to the fact291

that it borrows aspects from classical local search heuristics and evolution-292

ary algorithms (exploratory operators) [40]. Most of the other algorithms are293

either based on (stochastic or deterministic) local search, or include domain294

knowledge from TTP standard model, which is practically unusable for the295

generalised formulation we proposed (due to the second dependency - item296

value drop). These aspects combined result in an algorithm that can both ex-297

plore and exploit the solution space. Furthermore, the other TTP heuristics298

use problem knowledge as the main component of their logic [13, 26], making299

them unsuitable for this analysis.300

Table 1: Notations used in Algorithm 1. The remaining notations are aligned
with the problem formulation in Sub-section 3.1

Notation Description

P Main population of solutions
T Number of evaluations
Si An initial solution
Sbsf Best-so-far solution
RLS Local search probability
Q Offspring population
p1 and p2 Solutions selected to generate the offspring
Snew Solutions generate using genetic operators and local search
Srand A randomly generated solution to avoid premature convergence
g∗ The optimal objective value

Note that, to simplify the pseudocode notations, we use the same notation301

to evaluate a solution and to access its objective value. Therefore, only the302

first call of evaluation function G(.) is considered to increase the counter of the303

number of evaluations T , which will be used to calculate the expected runtime304

(ert). Furthermore, the algorithm does not take into account the dependencies305

as part of the domain knowledge used for the optimisation. This is done on306

purpose to avoid giving the algorithm an unfair advantage for some specific307

instance categories, and to obtain insights which can be used to improve the308

efficiency the the algorithm.309

Each solution in the population is initialised with a random permutation310

for the tour and random binary vector for the picking plan (line 4. As we are311

interested in the features making the problem difficult, random initialisation is312

important to for the same reason stated above, i.e., ensuring a fair algorithm313

and not favouring any specific instance categories.314

A best improvement hill climbing procedure is then used to refine the315

solutions by finding a local optima. The hill climbing algorithm uses two316

neighbourhood searches for the tour and the picking plan sequentially. A sim-317

plified pseudocode of the hill climbing procedure is shown in Algorithm 2. The318

N2-OPT(S) neighbourhood function returns a set of solutions where a new tour319
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is obtained by applying the 2-OPT operator [6] on the tour of S, while the pick-320

ing plan is copied from S as is. The same logic is followed for the Nbit-flip(S)321

function [8] where only the picking plan is updated. More details about these322

operators can be found in [8].323

Algorithm 2 Best improvement hill climbing algorithm
1: function hill_climbing(S, T )
2: repeat ▷ First neighbourhood search on the tour
3: for S∗ ∈ N2-OPT(S) do
4: if G(S∗) > G(S) then
5: S ← S∗

6: end if
7: T ← T + 1
8: end for
9: until S is not improved

10: repeat ▷ Second neighbourhood search on the picking plan
11: for S∗∗ ∈ Nbit-flip(S) do
12: if G(S∗∗) > G(S) then
13: S ← S∗∗

14: end if
15: T ← T + 1
16: end for
17: until S is not improved
18: return {S, T}
19: end function

The population is then sorted and the best solution is identified (lines 10-324

15). The tournament selection is applied to select 2 parent solutions, with a325

tournament size of Ntournament to produce Noffspring (lines 18). This is fol-326

lowed by the Maximal Preservative Crossover (MPX) operator, which returns327

a new solution by combining the parents (line 19). The hill climbing func-328

tion (Algorithm 2) is then applied to the new solution with a probability RLS329

(lines 22-24). If the new solution does not already exists in the offspring pop-330

ulation Q, it is included. Otherwise, a new solution is generated randomly331

(lines 25-31).332

Once the offspring is generated, it is combined with the population and the333

best solutions are kept for further improvement (lines 33-34). The algorithm334

stops when the maximum number of evaluations Tmax is reached, or a near-335

optimal solution (solution with a gap to optimal smaller than ϵ) is found336

(line 35).337

The parameters of Algorithm 1 are summarised in Table 2. The fine tuning338

of the parameters is done taking into account the size of the instances used339

for the analysis, with values chosen empirically based on a random sample340

of instances (diversified based on the features in Section 4, and on previous341

studies [9, 12]. This is ensure that the algorithm find a near-optimal solution342

in most cases, which is important to conduct the analysis.343
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Table 2: Memetic Algorithm parameters

Parameter Description Value

Tmax Maximum number of evaluations 100000
Npop Population size 6
Noffspring Offspring size 4
Ntournament Tournament size 3
RLS Local search probability 0.1
ϵ ϵ-approximation 0.01

3.3 Estimation of the Expected Runtime (ert)344

One way to measure the performance of an algorithm A (search cost), is con-345

sider the expected number of function evaluations necessary to achieve an346

ϵ-approximation. To achieve this, we save the number of function evaluations347

until an ϵ-approximation is found which characterises a “success”. Otherwise,348

the search cost is set to a predetermined maximum Tmax. This approach is349

similar to the one presented by Hansen et al [15], Liefooghe et al [23].350

In this approach, we denote ps ∈ [0, 1] as the probability of success of351

algorithm A, and Tf as the random variable measuring the number of function352

evaluations for unsuccessful runs (failures). After (t − 1) failures, each one353

requiring Tf evaluations, and the final successful run of Ts evaluations, the354

total runtime is T =
∑t−1

i=1 Tf +Ts, where t is the random variable representing355

the number of runs. t follows a geometric distribution with parameter ps.356

Equation 8 takes the expectation by considering independent runs for each357

instance, stopping at the first success:358

E[T ] = (E[t]− 1)E[Tf ] + E[Ts] (8)

Here, the estimated success rate (p̂s) is computed by the ratio of success-359

ful runs over the total number of executions. The expectation of a geometric360

distribution for t with parameter ps is equal to 1/ps. The expected runtime361

for unsuccessful runs E[Tf ] is set as a constant limit (Tmax) on the number of362

function evaluation calls, and the expected runtime for successful runs E[Ts]363

is estimated as the average number of function evaluations performed by suc-364

cessful runs. Given these assumptions, ert can be expressed as an estimation365

of the expected runtime E[T ] as presented in Equation 9.366

ert =
1− p̂s
p̂s

Tmax +
1

ts

ts∑
i=1

Ti (9)

where ts is the number of successful runs, Ti is the number of evaluations for367

successful run i.368
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4 Experiments, Results and Discussion369

4.1 Experimental setting370

The experimental framework consists of generating enumerable instances based371

on the problem features of interest, then running the algorithm and modelling372

the expected runtime (ert) 2.373

The instance generator considers the following features:374

• Number of cities (n): Represents the number of cities to visit. This feature375

is not considered as an input to the regression model. Instead, the experi-376

ments are replicated for multiples values of n ∈ {5, 6, 7, 8}. Small values of377

n are chosen in order to be able to enumerate the solutions, which is used378

to derive the optimal values, as there is no exact methods able to solve the379

problem. Note that we will exclude some illustrations for n = 5, 6, 7 for the380

sake of simplicity, but result summaries will be given for all the values of n.381

• Dropping rate (Dr): Represents the dropping rate at which the value of382

an item decreases through time as shown in Equation 2. Dr takes values383

from the set {0.7, 0.75, 0.8, . . . , 1}.384

• Minimum velocity (vmin) is the minimum speed of the thief following385

Equation 1. vmin takes values from {0.1, 0.2, . . . , 1}.386

• Profit-weight correlation (T ): Defines the correlation between the387

weight (wi) and profit (pi) of each item. Three correlations have been de-388

fined in the TTP standard library [31]. We generate random weights and389

profits for each correlation type as follow:390

– Uncorrelated (0): pi ∼ U(10, 1000) and wi ∼ U(10, 1000),391

– Uncorrelated with similar weight (1): pi ∼ U(10, 1000) and wi ∼392

U(1000, 1010), and393

– Bounded strongly correlated (2): pi ∼ U(10, 1000) and wi = pi + 100.394

As this feature can be considered an ordinal variable, numerical values (be-395

tween parentheses) are assigned to represent the correlation strength, which396

will be useful for the regression analysis.397

• Knapsack capacity class (C): Takes values from {3, . . . , 10}. C is a factor
occurring in the maximum weight of the knapsack which is given in Equation
10.

W =
C
11

n∑
x=2

F∑
y=1

wxy (10)

Note that values lower than 3 have been excluded as they can result in398

capacities smaller than the smallest item weight.399

The features Dr and vmin are considered as they control the strength of400

the dependencies. While the motivation for choosing T and C is to compare401

their impact on the expected runtime with that of the dependency features.402

2We use Python3.10 with the statistical learning packages scikit-learn for the statistical analysis
and regression models
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Furthermore, the choice of T and C, instead of other features, is based on403

previous analyses [11, 12].404

10 instances are generated for each combination of feature values, resulting405

in a total of |n| × |Dr| × |vmin| × |T | × |C| × 10 = 67, 200 instances. Then, 30406

independent runs of Algorithm 1 are performed for each generated instance.407

Afterwards, the ert is calculated for each instance based on Equation 9.408

It is worth noting that the experiments result in 23 instances where the409

algorithm fails to identify an optimal or near-optimal solution, i.e., p̂s = 0,410

which results in a division-by-zero. To solve the issue, we set ert = ∞, and411

consider these results as outliers for the analysis. Note that, based on a deeper412

look into the individual results, we concluded that this happens for different413

categories (combinations of features), i.e., all the categories are covered in the414

analysis.415

4.2 Results and analysis416

4.2.1 Preliminary analysis of the runtime417

The histograms in Figure 2 shows the distributions of ln(ert), where ln(.)418

denotes the natural logarithm function for the different values of n. The natural419

logarithm is only used to better visualise the ert data. Indeed, ert follows a420

distribution that is heavy-tailed (with a very high kurtosis kurt[ert] = 1390.38421

for n = 8) and asymmetric (with a skewness µ3 = 32.51 for n = 8).422

The nature of ert makes it virtually impossible to use standard linear re-423

gression models. The most significant factor is the existence of outliers (large424

ert values) – representing hard instances – which are difficult to properly in-425

clude in the regression model. Note that the existence of heavy tails in the426

dependent variable is not a problem in itself, except when it leads to heavy-427

tailed residuals, which is the case here (based on experiments with linear428

regression and regression tree models).429

It is usually favourable for the observed residuals to be approximately430

normally distributed. In order to obtain (approximately) normal residuals, a431

transformation, such as the logarithm, square root or cubic root, should be432

applied to the ert. While the mentioned transformations can be efficient in433

taming outliers in many cases, the resulting residuals, even when using regres-434

sion trees and other regression models, remain heavy-tailed due to the high435

variation is the ert values. A better alternative in this case is to use the re-436

ciprocal, 1
ert , which results in a non-normal, but smaller-tailed distribution of437

the residuals for a regression tree as shown in Figure 3. Furthermore, in order438

to preserve the ert orders and improve the illustrations, we apply the trans-439

formation 1− min(ert)
ert instead, which does not impact the regression analysis440

results. We will refer to the resulting values as the runtime scores.441
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Figure 2: Histogram of expected runtimes in logarithmic scale

0.0 0.2 0.4 0.6 0.8 1.0
ln(ert)

0

200

400

600

800

1000

Co
un

t

0.6 0.4 0.2 0.0 0.2 0.4
Residuals

0

100

200

300

400

Co
un

t

Figure 3: Histogram of the runtime scores (left) and residuals using a regres-
sion tree (right) for n = 8

It is worth noting that 1
ert should not be interpreted as the expected rate.

Indeed, as the reciprocal is a convex function, we have:

E[rate] = E

[
1

runtime

]
≤ 1

E[runtime]
=

1

ert



Springer Nature 2021 LATEX template

16 Impact of dependency features on the expected runtime

based on Jensen’s inequality [19]. Furthermore, as the distribution of ert is442

unknown and difficult to fit, it is hard to deduce E[rate] using the law of the443

unconscious statistician. Therefore, 1
ert can be simply interpreted as the ert444

reciprocal.445

As linear models were not efficient in capturing the variability of the data,446

we utilise regression trees for two main reasons: (1) they are efficient in han-447

dling larger data with outliers, (2) they can produce explainable outcomes,448

which is important to understand the features’ impact on the expected runtime449

and identify what makes some TTP instances harder to solve. In other words,450

regression trees offer a better trade-off between efficiency and explainability451

compared to other alternatives.452

4.2.2 Regression analysis453

In order to analyse the impact of the problem features on the difficulty of454

tackling the instances, one must map the problem features to the expected run-455

time to identify near-optimal solutions. This can be achieved using non-linear456

regression analysis. Specifically, we consider regression trees using the Mean457

Squared Error (MSE) to measure the quality of split, and two parameters to458

control the model’s complexity. The first is the maximum depth, which rep-459

resents the maximum number of node splits the regression tree makes before460

returning a prediction. The second is the minimum sample size, which repre-461

sents the minimum number of samples at each leaf. We denote by RTn
dmax,smin

462

the regression tree 3 obtained for problem size n, by using the parameter val-463

ues dmax as the maximum depth and smin as the minimum sample size, during464

the training phase.465

Model tuning is achieved using a 5-fold cross-validation, and based on a466

grid search with different values of dmax and smin. Figure 4 shows a heat-map467

of the trade-off between the regression tree complexity and the model fitness468

for n = 8. A maximum R2 of 0.53 can be reached using the regression model469

RT 8
9,40, i.e., the corresponding models can explain 53% of the variation in ex-470

pected runtime that is predictable from the problem features. The remaining471

47% of the variation can be attributed to many other aspects, the most likely472

is the stochasticity of the considered Memetic Algorithm, which leads to high473

variation in the ert within some instance categories (combination of features),474

and high variation in the number of evaluations for the same instances. An-475

other, less likely scenario is that there are combinations of features that the476

regression tree was not able to identify. This is believed to have minimum im-477

pact as other machine learning algorithms (random forest and neural networks)478

were investigated and could not result in a better coefficient of determination.479

Naturally, more complex trees can result in higher R2 values. Nevertheless,480

this comes with the cost of losing the ability to interpret the model. For the481

purpose of this analysis, the goal is to understand the impact of the feature482

combinations on the expected runtime. Therefore, we favour small explainable483

3The implementation is done in Python 3.8.10 using scikit-learn 1.1.0



Springer Nature 2021 LATEX template

Impact of dependency features on the expected runtime 17

2040608010
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

60
0

62
0

64
0

66
0

68
0

70
0

72
0

74
0

76
0

78
0

80
0

82
0

84
0

86
0

88
0

90
0

92
0

94
0

96
0

98
0

10
00

Minimum sample size

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

M
ax

im
um

 d
ep

th

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

Figure 4: Regression tree complexity vs. coefficient of determination (R2) for
n = 8. The complexity is represented by the maximum depth, shown in the
y-axis, and the minimum sample size per leaf, shown in the x-axis; while R2

values are illustrated in the colour bar

trees, even if they explain a lower percentage of variability between the features484

and the expected runtime.485

Based on the above, we consider two regression models for each n. RT 5
6,280,486

RT 6
6,20, RT 7

7,20, and RT 8
9,40 are the models with the highest accuracy; while487

RT 5
3,380, RT 6

3,380, RT 7
3,380, and RT 8

3,380 represent a good trade-off between the488

tree complexity and quality-of-fit for all n values. The evaluation metrics of489

the two resulting models are shown in Table 3 for each value of n, where the490

first model corresponds to the explainable one, and the second corresponds to491

the one with the highest coefficient of determination.492

Table 3: Evaluation metrics of the obtained regression trees. MAE is the
mean absolute error, MSE is the mean squared error, RMSE is the root mean
squared error, and R2 is the coefficient of determination

n 5 6 7 8

Model RT 5
3,380 RT 5

6,280 RT 6
3,380 RT 6

6,20 RT 7
3,380 RT 7

7,20 RT 8
3,380 RT 8

9,40

MAE 0.08 0.08 0.09 0.09 0.1 0.1 0.09 0.08
MSE 0.12 0.12 0.12 0.12 0.13 0.12 0.11 0.11
RMSE 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.01
R2 0.37 0.4 0.45 0.48 0.4 0.45 0.5 0.55

In general, Table 3 shows that the loss in quality between the simple and493

complex models, in terms of error metrics and R2, is minimal and can be494

neglected due to the gain in explainability. Nevertheless, a difference in the495
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performances can be noticed between the different models for each n value.496

Looking back at the different ert distributions, this can be explained by the497

fact that as n grows, the variance in ert decreases.498

On the one hand, the complex regression trees (RT 5
6,280, RT 6

6,20, RT 7
7,20 and499

RT 8
9,40) can provide useful global insights on the importance of features and500

to what extent we can explain the variability in the runtime variable, but it501

could be less practical to extract which combination of feature values lead to a502

specific expected runtime. On the other hand, the explainable regression trees503

(RT 5
3,380, RT 6

3,380, RT 7
3,380 and RT 8

3,380) result in a competitive quality while504

having the additional benefit of being explainable, allowing us to draw useful505

conclusions on what makes instances easier or harder to solve.506

Table 4: Feature importance based on all regression tree models

n 5 6 7 8

Model RT 5
3,380 RT 5

6,280 RT 6
3,380 RT 6

6,20 RT 7
3,380 RT 7

7,20 RT 8
3,380 RT 8

9,40

T 0.13904 0.13409 0.13814 0.13800 0.17611 0.18711 0.27582 0.27084
C 0.79609 0.79498 0.72660 0.67902 0.60393 0.54678 0.47955 0.44658
Dr 0.05560 0.05555 0.12460 0.13655 0.20094 0.19975 0.22137 0.22135
vmin 0.00927 0.01537 0.01066 0.04643 0.01902 0.06636 0.02327 0.06123
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Figure 5: Feature importance versus the problem size (n)

Table 4 provides a macroscopic idea on the impact of the problem features507

using the Gini-Simpson Index [20]. The feature importance values vary between508

the two models, but are aligned in sense that they rank features similarly. For509

this holistic investigation, we focus on the models having the better quality-510

of-fit.511
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The results show that the capacity class (C) is the most influential feature512

contributing to the difficulty of instances. This is followed by the dropping rate513

(Dr) and profit-weight correlation (T ), while the minimum velocity (Vmin) has514

a much lower impact index. Comparing the two dependency features shows515

that items losing value with time is highly important to predict the efficiency516

of the algorithm in tackling the problem. However, the change of velocity of the517

thief based on the knapsack load seems to have minimum impact on predicting518

the performance of the algorithm when tackling the problem.519

Figure 5 shows the evolution of the feature importance indices in terms of520

n. The dependency features tend to have a higher importance index as the521

problem size increases, this phenomenon is stronger for Dr compared to vmin.522

The same can be said about the feature T . On the other hand, the importance523

index for C is decreasing significantly.524

While the above analysis can help in identifying important features (and525

potentially eliminating less important ones), a more in-depth analysis should526

be done at a microscopic scale, which can be achieved using RTn
3,380.527
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Figure 6: Regression tree RT 5
3,380. Colour brightness represents the difficulty

of instance sets, where darker colour represents harder instances.

Figures 6, 7, 8, and 9 show the resulting regression tree models528

{RTn
3,380}, n ∈ {5, . . . , 8}, which will help us compare the regression logic across529

different instance sizes. Additionally, in Appendix A we reproduce the regres-530

sion models for n = 6, 7 to show that the results can be generalised, i.e., they531

are not dependent on the generated instances, but on the problem features.532
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Figure 7: Regression tree RT 6
3,380. Colour brightness represents the difficulty

of instance sets, where darker colour represents harder instances.
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Figure 8: Regression tree RT 7
3,380. Colour brightness represents the difficulty

of instance sets, where darker colour represents harder instances.
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Figure 9: Regression tree RT 8
3,380. Colour brightness represents the difficulty

of instance sets, where darker colour represents harder instances.

Based on this, we observe that the regression models follow a similar logic533

which can be clearly seen in the branching nodes. Small deviations exist in the534

branching nodes and predicted values. Looking at all the four models, we can535

report the following general observations and explanations:536

• Setting Dr = 1 results in the standard TTP model as the dropping rate537

dependency is deactivated, making the minimum velocity feature the main538

separator as it represents the velocity drop dependency. Furthermore, the539

lower minimum velocities (vmin) result in slightly harder instances.540

• Dr has a clear impact on the difficulty of instances. Lower dropping rate541

values result in more difficult instances.542

• Larger knapsack capacities (C) result in harder instances, as clearly seen543

in branches B2, B4, B5 and B6. This is in contradiction with the find-544

ings in [11, 12] where the difficulty of instances is associated with the size545

of basins of attraction, in the context of a local search algorithm applied546

to the standard TTP. Further experiments considering only standard TTP547

instances (Dr = 1) show a similar behaviour, confirming that larger knap-548

sack capacities increase the difficulty of the instances. This is suggesting549

that the contradiction is due to the nature of the search algorithm, not to550

the complexity added by considering the dropping rate dependency. Indeed,551

the local optima network analysis is only suitable for embedded neighbour-552

hood search algorithms; and the conclusions cannot be extrapolated to more553

sophisticated algorithms such as the considered evolutionary algorithms.554
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• For smaller capacities, the profit-value correlation (T ) has a significant im-555

pact on the problem difficulty. The hardest instances are the ones where556

the profit and weight are bounded and strongly correlated (T = 2) and the557

ones with no correlation (T = 0), while the instances with similar weights558

(T = 1) are the easiest to tackle.559

It is interesting to see how the item value drop dependency results in sig-560

nificant gaps in the performance of the algorithm. When it is deactivated561

(standard TTP), the instances can be solved relatively fast, and the velocity562

change dependency has only a small impact on the runtimes. When it is ac-563

tivated, the impact of the velocity change dependency is dominated by the564

capacity and correlation features.565

A possible explanation of the stronger impact of Dr compared to vmin can566

be attributed to the formulation of dependencies. Specifically, in the dropping567

rate dependency (see Equation 2), the updated item values are dependent on568

both the previous item value and the time the item has been carried. On the569

other hand, in the velocity change dependency (see Equation 1, the thief’s570

updated velocity only depend on the knapsack load, and its previous velocity571

is completely omitted.572

These findings show that the impact of different dependency relationships573

can differ significantly when formulating a problem with multiple components.574

In our case, the analysis shows that adding the item value drop dependency575

makes the TTP a much more challenging problem compared to the standard576

model, leading to harder instances, which is reflected by the expected runtime.577

Therefore, this aspect should be given more attention when investigated the578

TTP in particular, or other capacitated routing problems in general, especially579

because the impact of these features evolves based on the problem size.580

Recognising that different dependencies can have a significantly different581

impact on the problem’s difficulty is important. However, one can go beyond582

and seeks ways to use these results to improve the way these problems are583

tackled.584

As it is possible to estimate how much time would be needed to find a585

good approximation given a specific problem instance, based only on known586

features. One way to directly use the results reported here is to make an in-587

formed and automated decision on the maximum number of iterations (or time588

budget) needed to achieve near-optimality, given a specific problem instance.589

It is also possible to revisit the model and simplify it to reduce the impact590

of particular dependencies. This should be done carefully as it can lead to591

undesirable outcomes due to model oversimplification. Another possibility is592

to use these results as domain knowledge included in the solution methods.593

Such an approach can be clustering instances into categories that can be tack-594

led with different approaches based on their difficulty, or tuning the heuristic595

parameters based on these instances clusters.596
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5 Conclusion597

In this paper, we investigated the difficulty of the Travelling Thief Problem598

by considering two types of dependency on the fitness landscape using perfor-599

mance prediction models (regression analysis). We introduce a tunable model600

allowing to control the velocity change and item value drop dependencies us-601

ing associated problem features. The impact of these features on the expected602

runtime is then evaluated to understand how these features impact the search603

landscape for a Memetic Algorithm.604

This study allowed us to better understand what makes instances harder,605

and gave us new insights on the impact of the problem features. The analysis606

shows that the inclusion of the item value drop dependency leads to harder607

instances, which is reflected by the expected runtime. The results also showed608

how the impact of these features evolves based on the problem size. In partic-609

ular, the dropping rate tends to be more important as the problem grows and610

its impact is stronger than the velocity change constraint.611

A continuation of this study is to map these features to the choice of al-612

gorithm parameter. Besides, as future work, we intend to explore other fitness613

landscape techniques such as fitness cloud, auto-correlation, time to local opti-614

mum, distance to global optimum, information analysis: entropy, information615

stability, partial information content and density basin information.616
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Appendix A Additional results630

In this appendix, we show the results for additional experiments on different631

sets of instances for n = 6 and n = 7. The same process defined in the earlier632

sections was used to create them, but just different seeds of the random number633

general were used. The goal is to show that different sets of instances generate634

roughly the same regression model, i.e., regression trees with a similar logic as635

shown in Figure A1.636
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When comparing these two with the corresponding trees in Figures 7 and 8,637

we can see that the conditions at the inner nodes are almost always identical638

(i.e. for 10 of 13 inner nodes) or very similar, and the respective errors (shown639

in Table A1) and sample numbers are very close matches, too.640
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samples = 892
value = 0.542

squared_error = 0.017
samples = 1212
value = 0.677

squared_error = 0.014
samples = 5955
value = 0.727

squared_error = 0.018
samples = 452
value = 0.617

squared_error = 0.007
samples = 703
value = 0.532

C <= 3.5
squared_error = 0.037

samples = 960
value = 0.546

T <= 1.5
squared_error = 0.037

samples = 1881
value = 0.435

C <= 5.5
squared_error = 0.015

samples = 7167
value = 0.719

v_min <= 0.45
squared_error = 0.013

samples = 1155
value = 0.565

T <= 0.5
squared_error = 0.04

samples = 2841
value = 0.473

Dr <= 0.975
squared_error = 0.017

samples = 8322
value = 0.697

C <= 4.5
squared_error = 0.033

samples = 11163
value = 0.64

squared_error = 0.019
samples = 487
value = 0.334

squared_error = 0.034
samples = 488
value = 0.585

squared_error = 0.023
samples = 1262
value = 0.726

squared_error = 0.013
samples = 7565
value = 0.783

squared_error = 0.018
samples = 873
value = 0.653

squared_error = 0.01
samples = 584
value = 0.575

squared_error = 0.043
samples = 496
value = 0.587

T <= 1.5
squared_error = 0.043

samples = 975
value = 0.46

C <= 4.5
squared_error = 0.015

samples = 8827
value = 0.775

v_min <= 0.65
squared_error = 0.016

samples = 1457
value = 0.621

T <= 0.5
squared_error = 0.046

samples = 1471
value = 0.503

Dr <= 0.975
squared_error = 0.018

samples = 10284
value = 0.753

C <= 3.5
squared_error = 0.029

samples = 11755
value = 0.722

Figure A1: Regression tree RT 6∗
3,380 for a new dataset with n = 6 (top) and

RT 7∗
3,380 with n = 7 (bottom).
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Table A1: Evaluation metrics of the regression trees.

Model RT 6∗
3,380 RT 7∗

3,380

MAE 0.1 0.1
MSE 0.13 0.13
RMSE 0.02 0.02
R2 0.45 0.4

Hence, we conclude that even though the methodology is based on ran-641

domly created instances and even though it employs a memetic algorithm as a642

randomised search heuristic, the achievable insights at a high level (i.e. when643

reasoning about the effects of dependencies) are unaffected.644
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