
Generating Instances
with Performance Differences

for More Than Just Two Algorithms
Jakob Bossek, Markus Wagner

jakob.bossek@wi.uni-muenster.de
markus.wagner@adelaide.edu.au

Code at https://github.com/jakobbossek/GECCO2021-ECPERM-ttp-evolving

mailto:jakob.bossek@wi.uni-muenster.de
mailto:markus.wagner@adelaide.edu.au
https://github.com/jakobbossek/GECCO2021-ECPERM-ttp-evolving

Diversity nowadays: show alternatives

University of Adelaide 2

Mine planning:
optimize w.r.t. known objectives
(money, time, …) but then show
alternative plans (e.g. sequences, …)

Inspirational image generation:
optimize quality & similarity (to a
seed), but be diverse (search
here via the latent space)

Algorithm understanding / algorithm
tuning / algorithm portfolios / …:
generate X instances (diverse w.r.t. Y
features) on which Z algorithms
perform as differently as possible

Algorithm
footprint

[Background 1/4] Performance Diversity of
instances for the Travelling Salesperson
Problem
fundamental combinatorial problem: find the shortest tour across n
cities
è In ~2010: we want to construct a set of TSP instances on which the
performance of one algorithm varies

Examples:
• Diverse set where a certain algorithm is performing badly (high

approximation ratio)
• Diverse set where two solvers are performing differently (again: use

performance ratios).

Here: 25 cities

University of Adelaide 3

872 W. Gao et al.

As in previous studies, we measure hardness of a given instance by the ratio of
the solution quality obtained by the considered algorithm and the value of an
optimal solution.

The approximation ratio of an algorithm A for a given instance I is defined
as

αA(I) = A(I)/OPT (I)

where A(I) is value of the solution produced by algorithm A for the given
instance I, and OPT (I) is value of an optimal solution for instance I. Within
this study, A(I) is the tour length obtained by 2-OPT for a given TSP instance
I and OPT (I) is the optimal tour length which we obtain in our experiments
by using the exact TSP solver Concorde [17].

We propose to use an evolutionary algorithm to construct sets of instances
of the TSP that are quantified as either easy or hard in terms of approximation
and are diverse with respect to underlying features of the produced problem
instances. Our evolutionary algorithm (shown in Algorithm1) evolves instances
which are diverse with respect to given features and meet given approximation
ratio thresholds.

The algorithm is initialized with a population P consisting of µ TSP instances
which have an approximation ratio at least αh in the case of generating a diverse
set of hard instances. In the case of easy instances, we start with a population
where all instances have an approximation ratio of at most αe and only instances
of approximation ratio at most αe can be accepted for the next iteration. In each
iteration, λ ≤ µ offspring are produced by selecting λ parents and applying muta-
tion to the selected individuals. Offsprings that don’t meet the approximation
threshold are rejected immediately.

The new parent population is formed by reducing the set consisting of parents
and offsprings satisfying the approximation threshold until a set of µ solutions
is achieved. This is done by removing instances one by one based on their con-
tribution to the diversity according to the considered feature.

The core of our algorithm is the selection among individuals meeting the
threshold values for the approximation quality according to feature values. Let
I1, . . . , Ik be the elements of P and f(Ii) be their features values. Furthermore,
assume that f(Ii) ∈ [0, R], i.e. feature values are non-negative and bounded
above by R.

We assume that f(I1) ≤ f(I2) ≤ . . . ≤ f(Ik) holds. The diversity contribu-
tion of an instance I to a population of instances P is defined as

d(I, P) = c(I, P),

where c(I, P) is a contribution based on other individuals in the population
Let Ii be an individual for which f(Ii) #= f(I1) and f(Ii) #= f(Ik). We set

c(Ii, P) = (f(Ii) − f(Ii−1)) · (f(Ii+1) − f(Ii)),

which assigns the diversity contribution of an individual based on the next
smaller and next larger feature values. If f(Ii) = f(I1) or f(Ii) = f(Ik), we

[Background 2/4] Single-feature diversity
measure
(also shows: going from 2 to 3+ can sometimes be challenging)

Feature f:

4

University of Adelaide

[Background 2/4] Single-feature diversity
measure
(also shows: going from 2 to 3+ can sometimes be challenging)

Diversity of a population:

“Diversity” of
a single solution:

Feature f:

Compare with this:

Maximum: if solutions are
equally spaced out, as this is

then the sum of squares

dfi(Ii,P)

dfi(Ii,P)

5

dfi(Ii,P
)

dfi(Ii,P)

dfi(Ii,P)
dfi(Ii,P)
dfi(Ii,Pdfi(Ii,P)

[Background 3/4] Features of “easy/hard”
TSP instances for 2-opt
(with and without
diversity optimization)

University of Adelaide 6

874 W. Gao et al.

Fig. 1. (left) The boxplots for centroid mean distance to centroid feature values of a
population consisting of 100 different hard or easy TSP instances of different number of
cities without or with diversity mechnism. (right) The boxplots for cluster 10% distance
distance to centroid feature values of a population consisting of 100 different hard or
easy TSP instances of different number of cities without or with diversity mechnism.
Easy and hard instances from conventional approach and diversity optimization are
indicated by e(a), h(a) and e(b), h(b) respectively.

differences in the possible range of feature values for easy and hard instances.
We study the effect of the diversity optimization on the range of features by
comparing the instances generated by diversity optimization to the instances
generated by the conventional approach in [7]. Evolving hard instances based
on the conventional evolutionary algorithm, the obtained instances have mean
approximation ratios of 1.12 for n = 25, 1.16 for n = 50, and 1.18 for n = 100.
For easy instances, the mean approximation ratios are 1 for n = 25, 50 and 1.03
for n = 100.

Figure 1 (left) presents the variation of the mean distance of the distances
between points and the centroid feature (centroid mean distance to centroid) for
hard and easy instances of the three considered sizes 25, 50 and 100. Each set
consists of 100 instances generated by independent runs [7]. As shown in Fig. 1
(left) the hard instances have higher feature values than for easy instances for
all instance sizes. For example, for instance size 100 and for the hard instances
the median value (indicated by the red line) is 0.4157 while its only 0.0.4032 for
the easy instances. The respective range of the feature value is 0.0577 for the
hard instances and 0.0645 for the easy instances. For the instances generated by
diversity optimization (easy and hard instances are indicated by e(b) and h(b)
respectively), there is a difference in the median feature values for the hard and
easy instances similar to the instances generated by the conventional approach.
Additionally, the range of the feature values for both the hard and easy instances
has significantly increased. For example, for the instance size 100, the median
value for easy instances is 0.4028 and the range is 0.2382. For the hard instances
of the same size, the median is 0.04157 while the range is 0.1917 (see Fig. 1
(left)).

Similarly, Fig. 1 (right) presents the variation of cluster 10% distance to cen-
troid (cluster 10pct distance to centroid) feature for the hard and easy instances
generated by the conventional approach (indicated by (e(a) and h(a)) and for
the hard and easy instances generated by diversity optimization (indicated by

Works for other features, too… but not for all.

Long story short (here): old conclusions drawn re importance
(for difficulty) invalidated by including feature diversity

Feature values of evolved instances:
From left to right:
1. Easy instances / only using 𝛂
2. Hard instances / only using 𝛂
3. Easy instances / feature diversity (𝛂 as quality constraint)
4. Hard instances / feature diversity (𝛂 as quality constraint)

}
Conclude that this feature is
important for instance difficulty
(you might end up training an
algorithm selector on this data)

[Background 4/4] … diversity optimization
is a hot field
Our focus is typically on problem formulations…
- Feature diversity w.r.t. 2+ features

(GECCO’19 BPA nomination)
è going from 1 to 2+ features has been challenging
without favouring one feature (or value range or
linear combination or …) over another

- Lots of theoretical runtime analyses by Frank Neumann et al.
(GECCO’21 BPA nomination)

- More material: IEEE CEC 2021 tutorial
https://cs.adelaide.edu.au/~optlog/EvolutionaryDiversityOptimisationTutorialCEC2021.php

èThe OPEN QUESTION this present paper aims to
answer:
How to evolve instances on which 3+ algorithms perform as
differently as possible?
For example: I1: A1 > A2 > A3 I2: A3 > A1 > A3 I3: A3 > A2 > A1

University of Adelaide 7

https://cs.adelaide.edu.au/~optlog/EvolutionaryDiversityOptimisationTutorialCEC2021.php

Approach

University of Adelaide 8

What shall our
fitness function F be?

IDEA 1/3: Pairwise approach
Consider all N(N-1) ordered pairs of algorithms and evolve
for each pair in individual runs.
è

- Easy to formulate with existing tech.
- But: a run ignores all other N-2 algorithms, e.g., a

resulting instance might be easy for all of these.

Approach

University of Adelaide 9

What shall our
fitness function F be?

IDEA 2/3: No order
Sort performances pi
and then maximise the
crowding distance.

è

- Uses established technology (see [Background 3/5]).
- We need to get lucky to hit a desired permutation.

Approach

University of Adelaide 10

What shall our
fitness function F be?

IDEA 3/3: Explicit ranking
Use a three-tuple to implement two “phases”:
1. Phase: match the desired ranking
2. Phase: maximise the performance difference

Some details:
Let p1,…,pN be the performance values of the algorithms, and let
𝜋 be the desired ranking.
Good directions: G={(i,i+1)|p𝜋(i) ≥ p𝜋(i) }
Bad directions: B={(i,i+1)|p𝜋(i) < p𝜋(i) }
à Maximise lexicographically: F(p1,…,pN; 𝜋) = (|G|, fB, fG)

where fB is the sum of the distances in the bad pairs, and
fG is the sum of the distances in the good pairs.*

Local sensitivity

is necessary!

Case Study
Target problem: Travelling Thief Problem
(partly “find a permutation for the travelling” and partly “find a bitstring for a knapsack”)

Target algorithms:
- S2 (“simple”): targets bitstring
- S4 (“simple”): targets permutation
- C2 (“complex”): targets bitstring & permutation alternatingly

Instance evolution:
- simple (1+1)EA with disruptive operators
- instances with 200 nodes and with 200, …, 2000 items
- performance on an instance:

- During evolution: median of 5 runs
- After evolution: run all three algorithms 30 times

University of Adelaide 11

Results: desired vs. actual rankings

% of successful
jobs

University of Adelaide 12

of instances
evolved target: 40

Results: Investigating issues

1) General noise…
(30*3=90 triangles show
the raw performance)

… sometimes bi-modal behaviour

à Address 1) and 2) by using more repetitions during
evolution… but this costs computation time.

2) The complex C2 heuristic is “more powerful” than the
other two and tends to dominate.
University of Adelaide 13

Results: Properties of instances (1/2)
PCA in the “instance feature”-space

University of Adelaide 14

à For some rankings: instances appear in distinct parts of the “instance feature”-space.
But remember [Background 3/5]: we need to be careful when drawing conclusions

from such observations, as we have only optimised performance rankings.

Results: Properties of instances (2/2)
Two Examples

University of Adelaide 15

S2 > S4 > C2

C2 > S4 > S2

TSP: node
coordinates

knapsack items:
weight & profit

What is next???

16

- Optimisation: study custom variation operators [we learned that we
have to be disruptive in the encoding space]

- Your solvers: how to change your state-of-the-art solvers to compute
diverse sets of solutions (instead of a single one)? [beneficial to the end
user, but maybe also during search?]

- Your domains: can ‘diversity’ be helpful to you, if so, why and how?

Email: jakob.bossek@wi.uni-muenster.de markus.wagner@adelaide.edu.au

Papers + code:
http://www.jakobbossek.de/
https://cs.adelaide.edu.au/~markus/publications.html
https://cs.adelaide.edu.au/~frank/publications.html

Summary:
Diversity — when optimisation is not the goal
10 years ago: “evolve easy/hard instances for one algorithm”
Now: ”evolve solutions (== ‘actual’ solutions, instances, …) that
are diverse in multi-dimensional spaces (‘actual’ feature space,
performance space, …), possibly subject to minimum quality
constraints”

16

mailto:jakob.bossek@wi.uni-muenster.de
mailto:markus.wagner@adelaide.edu.au
http://www.jakobbossek.de/
https://cs.adelaide.edu.au/~markus/publications.html
https://cs.adelaide.edu.au/~frank/publications.html

