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Real-world optimisation

Problem-specific (or exact mathematical) 
algorithms not always available

… problem is not entirely understood
… objective function is based 

on a simulation
… lot of non-linear pieces
… not enough resources
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https://www.horoscope.com/images-US/games/game-magic-8-ball-no-text.pnghttp://infinity77.net/global_optimization/_images/Schwefel26.png https://www.vectorstock.com/royalty-free-vector/green-energy-logo-design-with-renewable-icon-vector-28823824

https://www.horoscope.com/images-US/games/game-magic-8-ball-no-text.png
http://infinity77.net/global_optimization/_images/Schwefel26.png
https://www.vectorstock.com/royalty-free-vector/green-energy-logo-design-with-renewable-icon-vector-28823824
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Heuristic Optimisation – my field
Heuristic Approaches 
… do not rely on gradient information.
… are less likely to get stuck due to inherent parallelism.

General Template
1. Choose a representation for the potential solutions.
2. Choose a function to evaluate the quality.
3. Define operators that produce new solutions. 

Examples: Grid Search, Local Search, Variable Neighbourhood Search, Simulated Annealing, 
Evolutionary Algorithms, Ant-Colony Optimisation, …
Can it get funded? “Dynamic Adaptive Software Configurations” (ARC)

“Intelligent Technologies for Smart Cryptography” (ARC)
“Automatic Post-Quantum Cryptographic Code Generation and Optimization” (Google)
“Rewriting software documentation for non-native speakers” (Google)
“Contextually Situated Anomaly Detection” (Defence Innovation Partnership)
“Collaborative Sensing and Learning for Maritime Situational Awareness” (ARC)
“Socialz – Multi-Objective Automated Social Fuzz Testing” (Facebook) …coming up in 5 min…

https://www.dreamstime.com/earch-local-maps-global-search-icon-gps-navigation-vector-illustration-image107058112
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Algorithmic Interests
1) Achieve the best results

Related: how to benchmark? Check out “Benchmarking in Optimization: Best Practice and Open Issues”

2) Reach a local optimum quickly
self-adaptive parameter control (based on feedback during the search); heavy-tailed probabilities (instead of the sharply 

concentrated 1/n); use restarts (“bet-and-run”)

3) Problem types
Optimisation under noise (phones are the worst: unreliable software, sensor drift, system states, …)

Multi-objective optimisation

Problems with multiple interdependent components (Decompose? Multiple levels?)

4) Learn about the problem
Systematic analyses of local optima: visualise the neighbourhood; local optima networks, and then feed that knowledge back into 

the design of the variation operators*

Use “Automatic algorithm configuration” (=tuning) to learn about set of problem instances

MSR/EMSE papers with Tim Menzies on the general ideology of always using optimisation): 

“Better Software Analytics via DUO: Data Mining Algorithms Using/Used-by Optimizers” (à fine tune yourself and your competitors)
“Data-Driven Search-based Software Engineering”

5) Compute diverse solutions/entities
structurally diverse TSP instances OR discriminating TSP instances (e.g. for benchmarking purposes, for model-building purposes, …)

Images that are different w.r.t. features (but not too far away from the original)

Diversified community interaction in a social networks



In Collaboration with 

Francisco Zanartu (UAdelaide) and 

Christoph Treude (UMelbourne)

https://arxiv.org/abs/2302.08664

https://github.com/fzanart/Socialz

under review

Socialz: Multi-Feature Social 
Fuzz Testing

Let’s finally get to a research project… Supported by 
Facebook/Meta

* Includes two algorithmic 
building blocks

https://arxiv.org/abs/2302.08664
https://github.com/fzanart/Socialz
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Bugs in Online Social Networks

Affected users:
Yahoo: 3.5bns
Facebook: 2.1bn
LinkedIn: 1.1bn
MySpace: 0.7bn
Sina Weibo: 0.5bn
…
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Social Bugs
Social bugs are the result of community interaction, see “WES: Agent-based user interaction 
simulation on real infrastructure”.
Social testing poses challenges: data collection (time-consuming, difficult, illegal), setup cost.

Socialz to the rescue!
A novel approach to social fuzz testing that 
(1) characterises real users of a social network, 
(2) diversifies their interaction using evolutionary computation across multiple, non-trivial features, 

and 
(3) collects performance data as these interactions are executed. 

With Socialz, we aim to provide anyone with the capability to perform comprehensive social testing, 
thereby improving the reliability and security of online social networks used around the world.
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Socialz – Overview
Target platform

Three-stage approach for fuzz testing OSNs
1/3: Characterisation of User Behaviour
2/3: Evolutionary Diversification of Community Interaction
3/3: Execution

Efficient evolution and evaluation*

Conclusions and future work (and then the actual Conclusion of this seminar)
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Useful features
• GitLab is widely used (>30M users)
• GitLab CE is free and open source

• Provides comprehensive set of performance metrics
• Prometheus time-series database

• Pre-defined Grafana dashboards

• Docker container

Target Platform: GitLab Community Edition
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Stage 1/3: Characterisation of User Behaviour
Based on GitHub Archive.

Original dataset: 1,523 users created a total of 6,742 events involving 156 repositories and forks
(2011–2016). Subcommunity: COBOL.

PushEvent ≈ being invited to a group with permission to publish some content
WatchEve nt ≈ liking a public profile page
PullRequestEven t ≈ requesting permission to publish something to a group
WatchEvent/Fork Event ≈ liking a public profile page

FollowEvents* ≈ establishing a connection with another user
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Stage 2/3: Evolutionary Diversification of Interaction
Our ambition: non-trivial features of Community Interaction…
- Degree of Centrality (number of edges)
- PageRank (“importance”)
- Event types (16* different combinations)

The “Original” dataset

GECCO ’18, July 15–19, 2018, Kyoto, Japan A. Neumann et. al.
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Figure 3: All feature vectors generated in 10 runs of (µ + �)-EAT with 1000 iterations each (left), one run with 1000 iterations
(middle), the �nal population after 1000 iteration with discrepancy 0.22637 (right).

Algorithm 2: O���R�����W���M������� (X , tmax)
1 Let X is a image with pixels Xi j 2 X .
2 Y  X .
3 Choose starting pixel Yi j 2 Y uniformly at random.
4 Choose o�set o 2 [�r , r ]3 uniformly at random.
5 t  1.
6 while t  tmax do
7 Yi j = Yi j + o.
8 Choose Ykl 2 N (Yi j ) uniformly at random.
9 i  k , j  l .

10 t = t + 1.
11 Return Y .

(left), all feature vectors produced during one run (middle), and the
feature vectors of the �nal population (right). It can be observed
that the area where both feature values are high does not contain
any points (similarly if both feature values are very low). The seems
to indicate that the problem is constrained to a subspace of the unit
square. If this is true, then this has a direct consequence on the best
possible discrepancy value that can be obtained, as discrepancy is
a measure in [0, 1]d .

3.1 Self-Adjusting O�set Random Walk
Mutation

The algorithm uses a variant of the random walk mutation intro-
duced in [22] for evolutionary image composition. This speeds up
the process of diversity optimization by three orders of magnitude
compared to [1] where for a mutation operator changing in each
step a single pixel 1�4million iterationswhere required to construct
a diverse set of images. Our new mutation operator enables us to
construct diverse sets of images for all three algorithms (including
the (µ + �)-EAC investigated in [1]) within just 2000 generations.

The random walk in this paper di�ers from the one for image
composition given in [22] by changing the RGB values by an o�set
vector o 2 [�r , r ]3 chosen in each mutation step uniformly at
random. The mutation operator is shown in the Algorithm 2.

The random walk causes movement from the current pixel Xi j
to the next pixel by moving either right, left, down or up. We de�ne

the neighborhood N (Xi j ) of pixel Xi j as
N (Xi j ) =

�
X(i�1)j ,X(i+1)j ,Xi(j�1),Xi(j+1)

 
.

The random walk chooses an element of N (Xi j ) uniformly at
random in every step. Furthermore, the random walk is wrapped
around the boundaries of the image. We produce an o�spring Y
from X by setting each visited pixel Xi j to the value of Xi j + o.
Given a current image X , our (µ + �) � EAD algorithm uses the
random walk mutation to alter all visited pixels. Note that pixels
may be visited more than once and the o�set may be applied several
times in this case. The random walk paints all the visited pixels by
adding the chosen o�set vector o. Each random walk mutation is
run for tmax steps, where tmax is chosen in an adaptive way.

3.1.1 Self-Adjustment. We decrease the length of random walks
through decreasing tmax when the discrepancy value does not de-
crease as a result of an unsuccessful mutation. We increase tmax
if the discrepancy decreases as a result of a successful mutation.
This builds on the assumption that mutations doing less change
to the image are needed to obtain an improvement if it is hard
to make progress with the current choice of tmax. On the other
hand, a better progress may be achievable if the current setting
of tmax is already able to decrease the discrepancy. Our adaptive
approach makes use of the parameter adjusting scheme recently
used in [8]. This method, originally proposed in [14], applies the
classical 1/5-success rule from evolution strategies to a discrete
setting.

Our approach increases tmax for a successful outcome or de-
creases tmax in the case that the new o�spring is not accepted. In
our algorithm, tmax can take on values in tLB  tmax  tUB, where
tLB is a lower bound on tmax and tUB is an upper bound on tmax.

For a successful mutation, we set tmax B min {F · tmax, tUB}
and for an unsuccessful mutation, we set tmax B
max

n
F�1/k · tmax, tLB

o
, where F > 1 is a real value and

k � 1 an integer which determines the adaptation speed.
For our experimental investigations, we set tLB = 1000, tUB =

20000, F = 2, k = 8, and tmax = 1000 at initialization based on
preliminary experimental investigations.

3.2 Experimental settings
All algorithms were implemented inMatlab (R2017b). We ran all of
our experiments on single nodes of a Lenovo NeXtScale M5 Cluster

GECCO ’18, July 15–19, 2018, Kyoto, Japan A. Neumann et. al.
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to the image are needed to obtain an improvement if it is hard
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hand, a better progress may be achievable if the current setting
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3.2 Experimental settings
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our experiments on single nodes of a Lenovo NeXtScale M5 Cluster

How to get there?

Evolutionary Diversity Optimisation!
Imagine the following:
1) The plot on the left, we consider 
20 users in the feature space.
2) We use ”star discrepancy” as a 
measure to tell us how evenly 
the points are distributed.

variations varia
tio

ns

Implementation detail:
we mutate a copy of ALL 
‘000s of interactions, and 
accept the copy if it is more
diverse.
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Stage 2/3: Evolutionary Diversification of Interaction

Degree centrality
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Stage 2/3: Evolutionary Diversification of Interaction

Degree centrality

Degree centrality
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Stage 2/3: Evolutionary Diversification of Interaction

Degree centrality

Degree centrality

Start with a single 

mutation
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Stage 2/3: Evolutionary Diversification of Interaction

Degree centrality

Degree centrality

Start with a single 

mutation

Self-adaptive 

parameter control
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Stage 2/3: Evolutionary Diversification of Interaction

Degree centrality

Degree centrality

Start with a single 

mutation

Self-adaptive 

parameter control
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Stage 2/3: Evolutionary Diversification of Interaction

Degree centrality

Degree centrality

Start with a single 

mutation

Self-adaptive 

parameter control
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Stage 3/3: Execution and Evaluation
Before continuing… compare how and with what?

Original               

Random    

Simple        

Evolved

Original               

Random    

Simple        

Evolved

Degree centrality
Degree centrality

Degree centrality
Degree centrality
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Observing effects
Effects on the system.
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Observing effects
Effects on the system.

Correlation of effect and user characteristic:

Found one limitation: limit on number
of users that can be followed.
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Socialz – Summary
Key takeaways of this research:
• Social fuzz testing is a feasible approach, 

although the initial setup requires significant 
effort.

• Evolutionary diversity optimisation can 
generate community interactions that are 
significantly different from the original data 
or random data, potentially uncovering 
social bugs.

• Our testing also revealed a limitation that 
simple data replay could not.

Possible future work directions:
• Further characterisation and hybridisation 

of sub-communities.
• Exploration of additional community 

interactions and the related features.
• Integration of Socialz with traditional fuzz 

testing techniques that target code-level or 
system-level interactions.
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Lots of capable and user-friendly technology out there 

to optimise/visualise/learn/...

Lots of simple things you can try out at home –

hill-climbers are your friends, even grid search 

can be your friend

@students: pay attention in your algorithms and 

maths courses J

http://acrocon.com/~wagner papers+slides online

markus.wagner@monash.edu

Conclusion
We did it!

http://acrocon.com/~wagner
mailto:markus.wagner@monash.edu

