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Theory and Applications of Bio-inspired Algorithms

Abstract

Evolutionary algorithms, which form a sub-class of bio-inspired algorithms, mimic
some fundamental aspects of the neo-Darwinian evolutionary process. They simultane-
ously search with a population of candidate solutions and associate an objective score as
a fitness value for each one. The algorithms then select among the population to favour
those solutions that are more fit. The next generation (i.e. a new population) consists
of replicates of the fitter solutions that have been genetically mutated and crossed over
in a biological metaphor: the decision variables were perturbed such that they inherit
characters of their parents, as well as change in random ways.

For the past decades, the algorithms’ success has led to strongly practical-oriented
interests. Although the theory of them is far behind the knowledge gained from exper-
iments, there are theoretical investigations about some of their properties. This thesis
spans theoretical investigations, theory-motivated algorithm engineering, and also the
real-world application of evolutionary algorithms.

First, we analyse different algorithms that work with solutions of variable length.
We show theoretically and experimentally that certain design choices can have drastic
impacts on the ability of an algorithm to find optimal solutions.

Second, motivated by recent theoretical investigations, we design a framework for
solving problems with conflicting objectives. We demonstrate that it can efficiently
handle problems with many such objectives, which most existing algorithms have dif-
ficulties dealing with.

Finally, we consider the problem of maximising the energy yield of wind farms. Our
problem-specific algorithm achieves higher quality results than existing approaches,
and it allows for an optimisation within minutes or hours instead of days or weeks.
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1
Introduction

In general, the research presented in this thesis is on the so-called evolutionary algo-
rithms. These form a sub-class of bio-inspired “problem solving recipes”, which mimic
some fundamental aspects of the neo-Darwinian evolutionary process. There are sev-
eral types of bio-inspired algorithms, such as evolutionary algorithms [31], particle
swarm optimisation [49], and ant colony optimisation [26], with each type being an
individual algorithm paradigm, and having many different concrete instances. Since
the 1960’s, these recipes are used in computer science to solve complex problems, e.g.,
route planning, roster scheduling, and design optimisation.

Typically, the algorithms simultaneously search with a population of candidate solu-
tions and associate an objective score as a fitness value for each one. They then select
among the population to favour those solutions that are more fit. The next generation
(i.e. a new population) consists of replicates of the fitter solutions that have been
genetically mutated and crossed over in a biological metaphor: the decision variables
were perturbed such that they inherit some characteristics of their parents as well as
change in random ways.

For the past decades, the algorithms’ success has led to strongly practical-oriented
interests [4, 58]. Although the theory of them is far behind the knowledge gained from
experiments, there are theoretical investigations about some of their properties.
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This thesis consists of the following three parts, which we will outline in more detail
in the remainder of this chapter:

• Part I Computational Complexity of Variable-Length Algorithms: we theoreti-
cally analyse a typical problem and the impacts that different mechanisms have
to solve this problem.

• Part II Design of Evolutionary Multi-Objective Algorithms: motivated by recent
theoretical investigations on the approximation indicator, we design a framework
for which we theoretically and experimentally show its efficiency.

• Part III Applications to Wind Farm Optimisations: we design efficient solvers
for a computationally costly and constrained real-world problem.

Electronic preprints of the papers underlying this thesis are available on the internet
at the following URL: http://www.acrocon.com/~wagner/publications.html

1.1 Part I: Computational Complexity of Variable-Length
Algorithms

One of the challenges of computer science is to get a computer to do what needs to be
done, without telling it how this can be accomplished. Genetic Programming (GP) [50],
which belongs to the paradigm of evolutionary algorithms, addresses this challenge. It
provides a scheme for automatically building computer programs from a high-level
statement of the problem. This is achieved by ‘breeding’ a population of computer
programs using the above-mentioned principles of Darwinian natural selection and
biologically inspired operations. We refer the interested reader to Poli et al. [73] for a
detailed presentation of GP.

In many scenarios the size of a solution is not specified in advance and solutions of
larger size may have a larger benefit, especially in the case of classification problems.
The flexibility of evolutionary algorithms that work with a variable-length representa-
tion often comes at the cost of the so-called bloat problem: individuals grow without
providing additional benefit to the quality of solutions [52]. In addition to this growth
of the individuals, the additional elements can block the optimisation process so that
problems that are relatively easy to optimise can not be handled by variable-length
evolutionary algorithms. For these reasons, several methods have been proposed in the
past to deal with the bloat problem. Typically, the effect of bloating is investigated
by means of empirical evaluation.

In computational complexity analysis, one considers simplified versions of such al-
gorithms and analyses them rigorously on certain classes of problems by treating them
as classical randomised algorithms [60]. Taking this point of view, it allows one to use
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a sophisticated pool of techniques and to treat the algorithms in a strict mathematical
sense. In the past, computational complexity analysis has significantly increased the
theoretical understanding of evolutionary algorithms for discrete search spaces. Initial
results on the computational complexity of evolutionary algorithms have been obtained
for artificial pseudo-Boolean functions [27, 75]. These results constitute the founda-
tions for later results on classical combinatorial optimisation, among them some of
the most prominent problems in computer science such as minimum spanning trees,
shortest paths, and maximum matchings (see [64] for an overview).

Our Contribution

Poli et al. [73] stated in 2008 “we expect to see computational complexity techniques
being used to model simpler GP systems, perhaps GP systems based on mutation and
stochastic hill-climbing.” However, not many studies on such variable-length systems
exist to date. With Part I of this thesis, we make significant contributions to their
understanding. We start from recent well-founded theoretical results on the behaviour
of variable-length evolutionary algorithms [29, 62] and we add to these.

1. In Chapter 3, we theoretically analyse the effect of different bloat-control strate-
gies on the time needed to solve one of the most basic problems in computer
science. We prove that certain design choices can have drastic impacts on the
ability of an algorithm to find optimal solutions.

2. In Chapter 4, we conduct rigorous experiments as some features of the opti-
misation process are difficult to analyse theoretically. We study the effects of
different initialisation and mutation strategies. Furthermore, our studies allow
us to conjecture average-case runtimes.

In our investigations on the bloat problem, we analyse single-objective approaches,
as well as multi-objective ones. For several scenarios, we prove that the multi-objective
approaches are the more successful ones. However, as we show in the second part of
this thesis, not all multi-objective approaches are alike.

1.2 Part II: Design of Evolutionary Multi-Objective Al-
gorithms

Most real-world optimisation problems are characterised by multiple objectives, and
these objectives are often in conflict with each other. For example, very cheap cars
should also be very safe, and durable aircraft components should also be light. The
general goal of solving a multi-objective optimisation (MOO) problem is to find a set
of compromise solutions. This set of solutions can then be inspected, and a decision
maker can choose one or potentially several solutions to a problem.

3



Due to the hardness of almost all interesting multi-objective problems, different
heuristic approaches have been used to tackle them. Among these methods evolution-
ary algorithms are frequently used as they work at each time step with a set of solutions
called population. The population of an evolutionary algorithm for a MOO problem is
used to store desired trade-off solutions for the given problem.

The Pareto front of a MOO problem consists of the function values representing
the different trade-offs with respect to the given objective functions. In practice, it
is impossible to compute the whole Pareto front, and MOO problems can often only
be solved approximately by heuristic approaches. As the size of the Pareto front
is often very large, evolutionary algorithms and all other algorithms for MOO have
to restrict themselves to a smaller set of solutions. Eventually, this set of solutions
should be a good approximation of the Pareto front. The main question is now how to
define approximation. The literature (see, e. g., [19]) on evolutionary multi-objective
optimisation just states that the set of compromise solutions

• should be close to the true Pareto front,
• should cover the complete Pareto front, and
• should be uniformly distributed.

However, this notion of approximation is not a formal definition. Having no formal
definition of approximation makes it hard to evaluate and compare algorithms for
MOO problems. Therefore, we think that it is necessary to use a formal definition of
approximation in this context and to evaluate algorithms with respect to this definition.

Our Contribution

The algorithms in the literature use different measures to ensure diversity in the ob-
jective space, but they are not guided by a formal notion of approximation. There are
a few exceptions that we will point out later, but they are only of theoretical interest.

This research is motivated by many theoretical investigations on the beneficial use of
formal definitions of approximation in the context of solving MOO problems. In Part II
of this thesis, we demonstrate a framework for approximation-guided evolutionary al-
gorithms. It is for the efficient optimisation of problems with many objectives.

1. In Chapter 6, we design a framework that uses a formal notion of approximation
for solving problems with conflicting objectives. We theoretically analyse its
computational complexity and we experimentally show its advantages over several
existing MOO approaches.

2. In Chapter 7, we present two major improvements that (1) drastically increase
the framework’s solution quality, and (2) decrease its computational costs at the
same time. We demonstrate that the framework can efficiently handle problems

4



with up to twenty conflicting objectives, which most existing algorithms have
difficulties dealing with.

Our framework enables practitioners now to add objectives with only minor conse-
quences, and to explore problems for even higher dimensions. While many real-world
problems have multiple conflicting objectives, some have just a single objective, but the
solutions need to satisfy certain constraints. Then, if the evaluation is computationally
costly, even a single-objective optimisation problem, such as the one presented in the
Part III of this thesis, can be difficult to optimise within reasonable time.

1.3 Part III: Applications to Wind Farm Optimisations

Renewable energy is energy that comes from natural resources, such as sunlight, wind,
tides, and geothermal heat. With renewable energy being a ‘hot topic’ right now and
the renewable energy market rapidly expanding worldwide, the rapid growth of the
renewable energy industry has led to cost reduction challenges.

The wind farm layout problem entails the process of planning the placement of
turbines on a potential wind farm site, and the layout design of a wind farm is an
important component of ensuring the profitability of a wind farm project [95]. There,
an inadequate design would lead to lower than expected wind power capture, increased
maintenance costs, etc. The creation of a farm layout involves the invocation of a
software optimisation module, which attempts to efficiently place the turbines while
adhering to the constraints and optimising the stated objectives. Often, this module
is embedded within a specialised tool provided by wind power consultants such as
Garrad Hassan or AWS TruePower, who offer a product such as the publicly available
OpenWind [3]. One of the problems that such tools have to deal with, apart from
the actual optimisation, is the scaling cost of computing wake effects when estimating
energy capture for increasing numbers of turbines. To estimate the energy capture of
a layout the optimisation module models the free stream wind flowing through the site
in and out of the turbines. Some degree of non-linear wind turbulence occurs at the
outflow of a turbine and affects the inflow to turbines close enough behind it. Modelling
this effect is necessary because wake has a great effect on the actual energy output of
a wind farm. However, computing the wake effects with respect to a given wake model
such as the Park wake model [66] is computationally expensive. This computational
effort is significant if one is applying iterative search algorithms such as local search,
simulated annealing or evolutionary algorithms for the optimisation of the placement.
Such methods need to evaluate each farm layout with respect to the wake model under
consideration and would therefore require costly simulations for each solution that is
considered during the optimisation process.
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With increasing frequency, wind farms are getting larger. For example, the Horse
Hollow Wind Energy Center in Texas, USA operates with 735.5 megawatt (MW) ca-
pacity and consists of more than 300 turbines spread over nearly 47,000 acres (190
km2). The layout of turbines in such large wind farms is challenged by large num-
bers of turbines, large farm areas, constraints on feasible sitings and expensive wake
models because the number of siting combinations of turbines on a large area is huge,
constraints must be respected and the cost of calculating wake loss scales non-linearly
with each additional turbine.

Our Contribution

In order to deal with these complex challenges bio-inspired algorithms have been ap-
plied several times. However, the results achieved so far are not very satisfying. For
example, most of the underlying models make inaccurate assumptions in order to make
the optimisation process computationally feasible, and there is often room left for im-
provements of the results as well.

In Part III of this thesis, we demonstrate accurate and efficient optimisation algo-
rithms for placing hundreds of turbines. Such an algorithm can be incorporated as an
software optimisation module in the above-mentioned tool OpenWind.

1. In Chapter 9, we present our first approach to optimise the placements of up to
one thousand turbines. We analyse the benefits of increasing the number of wind
turbines, as well as the benefits of increasing the available area in order to reduce
the disadvantageous wake effects.

2. In Chapter 10, we present a fast approach for evaluating new layouts. In addition,
we demonstrate a self-adaptive variation operator that makes effective use of the
problem characteristics to produce new layouts. We also show that our approach
significantly outperforms the industry tool OpenWind.

The single-objective yield optimisation of wind turbine placements on a given area
of land is a challenging optimisation problem. However, with our results in mind, we
can consider this problem solved.
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Part I

Computational Complexity of
Variable-Length Algorithms
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The further a mathematical theory is developed,
the more harmoniously and uniformly does its
construction proceed, and unsuspected relations
are disclosed between hitherto separated branches
of the science.

David Hilbert

2
Algorithms and Methods for Their Analysis

Evolutionary algorithms have found many applications in different do-
mains, such as combinatorial optimisation, multi-objective optimisation, finance and
renewable energy (see, e.g., [16, 17, 73]). In many scenarios the size of a solution is not
specified in advance and solutions of larger size may have a larger benefit especially in
the case of classification problems.

The flexibility of evolutionary algorithms that work with a variable-length represen-
tation often comes at the cost of the so-called bloat problem: individuals grow without
providing additional benefit to the quality of solutions [52]. In addition to this growth
of the individuals, the additional elements can block the optimisation process so that
problems that are relatively easy to optimise can not be handled by variable-length
evolutionary algorithms. For these reasons, several methods have been proposed in the
past to deal with the bloat problem. In this part of the thesis, we study the behaviour
of variable-length evolutionary algorithms and the influence of different bloat-control
mechanisms.

2.1 Motivation

Genetic programming (GP) [50] is the most prominent example of a variable-length
evolutionary algorithm, as it often evolves tree-like solutions for a given problem. Just
recently, the first computational complexity results on this type of algorithm have been
obtained, following the line of successful research on evolutionary algorithms with fixed-
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length representation (see the books by Auger and Doerr [2], Neumann and Witt [64]
for an overview). In general, variable-length representations increase the search space
significantly, and it is desirable to better understand the behaviour of algorithms using
such representations from a theoretical point of view. For example, Cathabard et al. [14]
investigated non-uniform mutation rates for problems with unknown solution lengths.
They used a simple evolutionary algorithm to find a bitstring with an unknown number
of leading ones and although the bitstring had some predetermined maximum length,
only an unknown number of initial bits was used by the fitness function. Durrett et al.
[29] investigated worst-case and average-case runtimes of a simple tree-based genetic
programming algorithm. The tackled problems were separable, with independent and
additive fitness structures.

Many evolutionary algorithms that work with a variable-length representation do
not work (in their most basic variant) with a form of bloat-control. One prominent
way of dealing with the bloat problem is the parsimony approach: in the case that two
solutions are of equal quality the solution of lower complexity is preferred. Another way
of coping with the bloat problem, which is sometimes even implemented in industrially
used GP packages such as Datamodeller [33], is to use a multi-objective approach that
uses a population representing the different trade-offs according to the original goal
function and the complexity of a solution. The solutions that represent the trade-offs
are called Pareto optimal. Both approaches of coping with the bloat problem have
recently been examined for the problems ORDER and MAJORITY in the context of
genetic programming [62, 68, 84].

Neumann [62] shows that both approaches help to solve the problems ORDER and
MAJORITY, but the differences between these two approaches are not examined.
In the next chapters we point out that switching from the parsimony approach to
the multi-objective one can significantly reduce the runtime. In particular, we will
present examples that prove to be local optima for the parsimony approach, whereas
the multi-objective approach is able to compute the optimal solution provably within
a polynomial number of steps.

This first part of the thesis is organised as follows. In this particular chapter, we
first introduce different problems in Section 2.2. Afterwards, we present the variable-
length algorithms that we will analyse in Section 2.3. Lastly, in Section 2.4 we show
some methods that are frequently used in the computational complexity analysis of
evolutionary algorithms. Then, in Chapter 3 we investigate the ability of different
variable-length algorithms to solve one of the fundamental problems in computer sci-
ence, namely the problem of sorting elements. In Chapter 4 we complement recent
theoretical investigations by rigorous experiments, in order to analyse important fea-
tures of the optimisation process.
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2.2 Problems

Our goal is to study the differences between bloat-control mechanisms for variable-
length evolutionary algorithms. In our theoretical and experimental investigations, we
will treat the algorithms and problems analysed in [29, 62, 67]. We consider tree-based
genetic programming, where a possible solution is represented by a syntax tree. The
inner nodes of such a tree are labelled by function symbols from a set F and the leaves
of the tree are labelled by terminals from a set T .

Even though many GP algorithms allow complex functions for the inner nodes, we
restrict the set of functions to the single binary function “join” J . Effectively, we use
J ’s to achieve variable-length lists by concatenating leaf nodes.

2.2.1 Weighted ORDER and Weighted MAJORITY

In Chapter 4, we examine the problems Weighted ORDER (WORDER) and Weighted
MAJORITY (WMAJORITY). The tackled problems are to some extent easy, as they
are separable, with independent and additive fitness structures. Furthermore, they all
have multiple solutions, which can be regarded as a key property of a real GP problem.

In these problems, the only function symbol is the above-mentioned binary “join”.
The terminal set consists of 2n variables, where x̄i is considered the complement of xi.
Hence, F := {J}, and L := {x1, x̄1, x2, x̄2, ..., xn, x̄n}.

The ORDER problem represents problems, where the set F ∪L includes conditional
functions. For example, numerical comparison functions (e.g, ≤, <,>) are often used in
classification problems. Such functions have two arguments (two subtrees) and only one
of the subtrees will be executed depending on the outcome of the conditional function.
Thus, a conditional function results in a conditional execution path. The algorithm’s
task is now to correctly position the functions to achieve the correct conditional ex-
ecution behaviour for all test data. Note that ORDER is an abstraction from this,
as trees are inspected instead of executed. Then, if a terminal is encountered before
its complement in an inorder parse, then the conditional execution path is considered
to be correct. Solutions to ORDER reflect a property that is commonly found in GP
solutions, where conditional functions are used: multiple equivalent solutions exist,
with different conditional execution paths.

The MAJORITY problem reflects a generally desired property of solutions: they
should have only correct functionality, and no incorrect functionality. Again, MAJOR-
ITY is an abstraction. A correct solution needs to have at least as many occurrences
of a terminal than of its corresponding complement, and it must furthermore contain
all (non-complement) terminals at least once.

In the generalisations WORDER and WMAJORITY, each variable xi is assigned a
weight wi ∈ R, 1 ≤ i ≤ n so that the variables can differ in their contributions to the
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Figure 2.1: Example for evaluations according to WORDER and WMAJORITY. Let
n = 5 and w1 = 15, w2 = 14, w3 = 12, w4 = 7, and w5 = 2. For the shown tree X,
we get (after inorder parsing) l = (x1, x̄5, x4, x̄2, x2). For WORDER, we get S = (x1, x4)
and WORDER(X) = w1 + w4 = 22. For WMAJORITY, we get S = (x1, x4, x2) and
WMAJORITY(X) = w1 + w4 + w2 = 36.

fitness of a tree. Without loss of generality, we assume that w1 ≥ w2 ≥ w3 ≥ . . . ≥
wn > 0. We get the ORDER and MAJORITY as specific cases of WORDER and
WMAJORITY where wi = 1, 1 ≤ i ≤ n.

For a given solution X, the fitness value is computed by parsing the represented tree
inorder. For WORDER, the weight wi of a variable xi contributes to the fitness of X
iff xi is visited in the inorder parse before all the x̄i in the tree. For WMAJORITY, the
weight of xi contributes to the fitness of X iff the number of occurrences of xi in the
tree is at least one and not less than the number of occurrence of x̄i (see Algorithms 2.1
and 2.2). We call a variable redundant if it occurs multiple times in the tree; in this
case the variable contributes only once to the fitness value. The goal of WORDER
and WMAJORITY problems is to maximise their function values. We illustrate both
problems by an example (see Figure 2.1).

Algorithm 2.1: WORDER(X)
input: a syntax tree X

init : an empty leaf list l, an empty statement list S
1 Parse X in-order and insert each leaf the rear of l as it is visited;
2 Generate S by parsing l front to rear and adding a leaf to S only if its
complement is not yet in S;

3 WORDER (X) =
∑

xi∈S wi;

MO-WORDER and MO-MAJORITY are variants of the above-described problems,
which take the complexity C of a syntax tree (computed by the number of leaves of
the tree) as the second objective:

• MO-WORDER (X) = (WORDER (X), C(X))
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Algorithm 2.2: WMAJORITY(X)
input: a syntax tree X

init : an empty leaf list l, an empty statement list S
1 Parse X in-order and insert each leaf the the rear of l as is is visited;
2 For 1 ≤ i ≤ n: if count(xi ∈ l) ≥ count(xi ∈ l) and count(xi ∈ l) ≥ 1, then add xi

to S;
3 WMAJORITY (X) =

∑
xi∈S wi;

• MO-WMAJORITY (X) = (WMAJORITY (X), C(X))

Optimisation algorithms can then use this to cope with the bloat problem: if two
solutions have the same fitness value, then the solution of lower complexity can be
preferred. In the special case, where wi = 1 holds for all 1 ≤ i ≤ n, we have the
problems:

• MO-ORDER (X) = (ORDER (X), C(X))

• MO-MAJORITY (X) = (MAJORITY (X), C(X))

2.2.2 Sortedness Measures

The problem that we use as the basis for our investigations in Chapter 3 is a classical
problem from the computational complexity analysis of evolutionary algorithms with
fixed-length representations, namely the sorting problem (SORTING). Scharnow et al.
[76] considered SORTING as an optimisation problem, where different fitness functions
measure the sortedness of a permutation of elements. It was discovered that different
fitness functions lead to problems of different difficulties.

It is important to note that, in contrast to WORDER and WMAJORITY, the
SORTING problem cannot be split into subproblems that can be solved independently.
As we shall see, these dependencies have a significant impact on the time needed to
solve the problem.

We will analyse our algorithms on different measures of sortedness. The problem
SORTING can be stated as follows. Given a totally ordered set (of terminals) T =

{1, . . . , n} of n elements, the task is to find a permutation πopt of the elements of T
such that

πopt(1) < πopt(2) < . . . < πopt(n)

holds, where < is the order on T . Without loss of generality, we assume πopt = id, i. e.
πopt(i) = i for all i, throughout our analyses.

The set of all permutations π forms a search space that has already been investigated
by Scharnow et al. [76] for the analysis of permutation-based evolutionary algorithms.
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The authors of that article investigate SORTING as an optimisation problem where
the goal is to maximise the sortedness of a given permutation. We will consider the
following fitness functions measuring the sortedness of a given permutation introduced
in [76]:

• INV(π), measuring the number of pairs in correct order (larger values are better),

• HAM(π), measuring the number of elements at correct position, which is the
number of indices i such that π(i) = i (larger values are better),

• RUN(π), measuring the number of maximal sorted blocks, which is the number
of indices i such that π(i+ 1) < π(i) plus one (smaller values are better),

• LAS(π), measuring the length of the longest ascending subsequence (larger values
are better),

• EXC(π), measuring the minimal number of pairwise exchanges in π, in order to
sort the sequence (smaller values are better).

Given a tree X, we determine the permutation π that it represents according to
Algorithm 2.3. Once we have seen an element during an inorder parse, we skip its du-
plicates. This is necessary, as the resulting sequence of elements for which we determine
its sortedness should contain each element at most once.

Algorithm 2.3: Derivation of F (X) for SORTING
1 Generate π by parsing X front to rear and adding an element to π only if it is not
yet in π;

2 Return F (π);

Note that EXC(π) can be computed in linear time, based on the cycle structure
of permutations. If the sequence is sorted, it has n cycles. Otherwise, it is always
possible to increase the number of cycles by exchanging an element that is not sitting
at its correct position with the element that is currently sitting there. For any given
permutation π consisting of n− k cycles, EXC(π) = k.

We will investigate the different measures for variable-length evolutionary algo-
rithms. Consequently, we might have to deal with incomplete permutations as not
all elements have to be contained in a given individual. Most measures can also be
used for incomplete permutation, but we have to make sure that complete permutations
always obtain a better fitness than incomplete ones, so that the sortedness measure
guides the algorithm from incomplete permutations to complete ones.

We will use the sortedness measures as above and use the following special fitness
assignments that enforce these properties:
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• INV(π) is the number of pairs in order, except INV(π) = 0 if |π| = 0, and
INV(π) = 0.5 if |π| = 1,

• RUN(π) = n+1 if |π| = 0, otherwise RUN(π) = b+m is the sum of the number
of maximal sorted blocks b, and the number of elements missing m = n− |π|,

• If |π| ≤ n then EXC(π) = e + m + 1, otherwise EXC(π) = e, where e is the
number of necessary exchanges, and m = n−|π| the number of missing elements.

Note that e can be computed for incomplete permutations as well, as only the order
< on the expressed variables has to be respected. This means that the permutations
π1 = (1, 4) and π2 = (1, 2, 3, 4) require no changes, but EXC(π1) ̸= EXC(π2), as the
number of missing elements differs.

For example, for a tree X with π = (2, 3, 4, 5, 1, 6) and n = 7, the sortedness results
are HAM(X) = 1, RUN(X) = 1 + 1 = 2, and EXC(X) = 4 + 1 + 1 = 6.

Lastly, we can again create multi-objective variants of the above-described problems,
which take the complexity C of a syntax tree (again computed by the number of leaves
of the tree) as the second objective:

• MO-INV (X) = (INV (X), C(X))

• MO-HAM (X) = (HAM (X), C(X))

• MO-EXC (X) = (EXC (X), C(X))

• MO-RUN (X) = (RUN (X), C(X))

• MO-LAS (X) = (LAS (X), C(X))

2.3 Algorithms

All GP algorithms that are analysed in this thesis only use the mutation operator
HVL-Prime to generate offspring. HVL-Prime is an update of O’Reilly’s HVL muta-
tion operator [70, 71]. It is motivated by minimality, rather than by problem-specific
operations. HVL-Prime produces a new tree by making changes to the original tree
via three basic operators: insertion, deletion and substitution (see Algorithm 2.4). In
each step of the algorithms, k mutations are applied to the selected solution. For the
single-operation variants of the algorithms, k = 1 holds. For the multi-operation vari-
ants, the number of operations performed is drawn each time from the distribution
k = 1 + Pois(1), where Pois(1) is the Poisson distribution with parameter1.

The algorithm (1+1)-GP* that we investigate first has no explicit mechanism to
control bloat whatsoever. The only feature that can potentially prevent the solution’s

15



Algorithm 2.4: HVL-Prime mutation operator
1 Mutate Y by applying HVL-Prime k times: each time randomly choose either
insert, substitute or delete.

2 if Insert then
3 Choose a variable u ∈ L uniformly at random and select a node v ∈ Y

uniformly at random. Replace v by a join node whose children are u and v, in
which their orders are chosen randomly.

4 if Substitute then
5 Replace a randomly chosen leaf v ∈ Y by a randomly chosen leaf u ∈ L.

6 if Delete then
7 Choose a leaf node v ∈ Y randomly with parent p and sibling u. Replace p by

u and delete p and u.

Algorithm 2.5: (1+1)-GP*-single for maximisation
1 Choose an initial solution X;
2 repeat
3 Set Y := X;
4 Apply the mutation operator (given in Figure 2.4) with k = 1 to Y;
5 if f(Y ) > f(X) then set X := Y ;

size to become too large is that only strict fitness improvements are accepted. Thus,
the maximum solution size is limited based on the size of the initial solution and by
the number of possible fitness improvements that can be performed.1

The single-objective variant called (1+1)-GP*-single (see Algorithm 2.5) starts with
an initial solution X, and produces in each iteration a single offspring Y by applying
the mutation operator HVL-Prime given in Algorithm 2.4 with k = 1. This means
that it is a stochastic hill-climber that explores its local neighbourhood. In the case of
maximisation, Y replaces X if f(Y ) > f(X) holds. Minimisation problems are tackled
in the analogous way.

The single-objective variant called (1+1)-GP (see Algorithm 2.6 for the single-
mutation variant) is identical to the just described (1+1)-GP*, with the exception
that, in the case of maximisation, Y replaces X if f(Y ) ≥ f(X) holds. Again, min-
imisation problems are tackled in the analogous way. As a consequence of the relaxed
acceptance condition, the complexity of the solution can increase as long as the fit-

1Note that the naming of our GP variants follows the conventions often used in the computational
complexity analysis of evolutionary algorithms: an asterisk indicates that a strict fitness improvement
over the old solution is required in order for the new solution to replace the current solution.

16



Algorithm 2.6: (1+1)-GP-single for maximisation
1 Choose an initial solution X;
2 repeat
3 Set Y := X;
4 Apply the mutation operator (given in Figure 2.4) with k = 1 to Y;
5 if f(Y ) ≥ f(X) then set X := Y ;

ness does not decrease. Thus, (1+1)-GP truly has no mechanism to prevent bloat
whatsoever.

In order to introduce the parsimony pressure to (1+1)-GP, where in case of identical
fitnesses the solution of lower complexity is preferred, we employ the multi-objective
variants of the presented sortedness measures, i.e. MO-WMAJORITY, MO-EXC, etc.
Without loss of generality, we assume that C is to be minimised and all fitness functions
F , except RUN and EXC, are maximised.2 In the parsimony approach, we optimise the
above-defined multi-criteria fitness functions MO-F(X) = (F (X), C(X)) with respect
to the lexicographic order, that is, MO-F(X) ≥ MO-F(Y ) holds iff

F (X) > F (Y ) ∨ (F (X) = F (Y ) ∧ C(X) ≤ C(Y )) . (2.1)

As the last algorithm, we consider the Simple Evolutionary Multi-Objective Genetic
Programming (SMO-GP) algorithm introduced by Neumann [62] and motivated by the
SEMO algorithm for fixed length representations by Laumanns et al. [55]. Variants
of SEMO have been frequently used in the runtime analysis of evolutionary multi-
objective optimisation for fixed length representations [see 34–36, 63, 64].

In this multi-objective variable-length algorithm, we treat the two criteria F and
C as equally important. In order to compare two solutions, we consider the classical
Pareto dominance relations:

1. A solution X weakly dominates a solution Y (denoted by X ⪰ Y ) iff
(F (X) ≥ F (Y ) ∧ C(X) ≤ C(Y )).

2. A solution X dominates a solution Y (denoted by X ≻ Y ) iff ((X ⪰ Y ) ∧
(F (X) > F (Y ) ∨ C(X) < C(Y )).

3. Two solution X and Y are called incomparable iff neither X ⪰ Y nor Y ⪰ X

holds.

A Pareto optimal solution is a solution that is not dominated by any other solution in
the search space. All Pareto optimal solutions together form the Pareto optimal set,
and the set of corresponding objective vectors forms the Pareto front. The classical

2The notions can be easily adjusted to other minimisation/maximisation problems.
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Algorithm 2.7: SMO-GP
1 Choose an initial solution X;
2 Set P := {X};
3 repeat
4 Choose X ∈ P uniformly at random;
5 Set Y := X;
6 Apply mutation to Y;
7 if {Z ∈ P | Z ⪰ Y } = ∅ then set P := (P \ {Z ∈ P | Z ≻ Y }) ∪ {Y };

goal in multi-objective optimisation is to compute for each objective vector of the
Pareto front a Pareto optimal solution. Alternatively, if the Pareto front is too large,
the goal then is to find a representative subset of the front, where the definition of
‘representative’ depends on the choice of the conductor.

SMO-GP (see Algorithm 2.7) is a population-based approach that starts with a
single solution and it maintains a set of non-dominated solutions obtained during the
optimisation run. This set of solutions constantly approximates the true Pareto front,
i.e. the set of optimal trade-offs between fitness and complexity. In each iteration, it
picks one solution uniformly at random and produces one offspring Y by mutation. Y
is introduced into the population iff it is not weakly dominated by any other solution
in P . If Y is added to the population all individuals that are dominated by Y are
discarded.

Similar to the previously introduced algorithms, SMO-GP-single uses the mutation
operator HVL-Prime with k=1. We also consider SMO-GP-multi that differs from
SMO-GP-single by choosing k according to 1 + Pois(1).

2.4 Methods for the Analysis

In the following, we will present several methods that are used frequently in the compu-
tational complexity analysis of evolutionary algorithms. The computational complexity
analysis of genetic programming analyses the expected number of fitness evaluations
until an algorithm has produced an optimal solution for the first time. This is called
the expected optimisation time. In the case of multi-objective optimisation the number
of fitness evaluations until the whole Pareto front has been computed is analysed and
referred to as the expected optimisation time.

Note that we do not present proofs of these methods here, as these are considered
standard tools. For an in-depth introduction with many examples and proofs, we refer
the interested reader to the books by Auger and Doerr [2] and Neumann and Witt [64].
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2.4.1 Fitness-Level Method

The first method is the so-called fitness-level method, to estimate the expected op-
timisation time. We will use this method on many occasions in Chapter 3. It has
originally been introduced for the analysis of elitist evolutionary algorithms (see, e. g.,
[94]), where the fitness of the current search point can never decrease. The idea is
to partition the search space into levels A1, . . . , Am that are ordered with respect to
fitness values. Formally, we require that for all 1 ≤ i ≤ m − 1 all search points in Ai

have a strictly lower fitness than all search points in Ai+1. In addition, Am must con-
tain all global optima. Now, if si is (a lower bound on) the probability of discovering
a new search point in Ai+1 ∪ · · · ∪ Am, given that the current best solution is in Ai,
the expected optimisation time is upper bounded by

∑m−1
i=1 1/si, as 1/si is (an upper

bound on) the expected time until fitness level i is left and each fitness-level has to be
left at most once.

2.4.2 Drift Analysis

Drift analysis was introduced to the theory of evolutionary algorithms by He and Yao
[45]. Since then, it has become one of the strongest (albeit deep mathematical) tools
for proving run-time guarantees for many evolutionary algorithm (e.g., see [37, 44, 69]).
In drift analysis, one uses an auxiliary potential function and tracks its behaviour. This
is in contrast to the fitness-level method, where one tracks how the objective function
value improves. It is required that the progress depends on the current potential
value, and for a number of problems such potential functions are a natural choice (e.g.,
minimum spanning tree problem, single-source shortest path problem).

In the proof of Theorem 7, we will use drift analysis with tail bounds [23, 24]. When
a feasible drift-function according to Definition 1 exists, then this allows for an elegant
computational complexity analysis via Theorem 1. In the following, we list the original
definition and theorem for the reader’s convenience.

Let n ∈ N be the problem size. Let Ωn be a search space and fn : Ωn → R be an
objective function defined on Ωn. Furthermore, let Ωopt ⊆ Ωn be the set of optimal
search points.

Definition 1 (Definition 1 in [23]). Let ν : N → R be monotonically increasing. We
call Φ : Ωn → R a feasible ν-drift function for fn and a given (1+1) evolutionary
algorithm, if the following conditions are satisfied.

1. Φ(x) = 0 for all x ∈ Ωopt,

2. Φ(x) ≥ 1 for all x ∈ Ωn\Ωopt,
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3. there is a constant δ > 0 (independent of n) such that for all x ∈ Ωn\Ωopt

E(Φ(xnew)) ≤
(
1− δ

ν(n)

)
Φ(x)

where as above we denote by xnew the solution resulting from executing a single
iteration (consisting of mutation and selection) with initial solution x.

Theorem 1 (Theorem 1 in [23]). Let Φ : Ωn → R. Denote by Φmax := max{Φ(x) |x ∈
Ωn} the maximum value of Φ. If Φ is a feasible ν-drift function (with implicit constant
δ) for fn and a given (1+1)-EA, then the expected optimisation time is at most

ν(n)

δ
(1 + lnΦmax).

Also, for any c > 0 (possibly depending on n), we have that the optimisation time
exceeds ν(n)

δ
(lnΦmax + c lnn) with probability at most n−c.

2.4.3 Chernoff Inequalities

In probability theory, these bounds give exponentially decreasing bounds on tail distri-
butions of independent random variables. This is in contrast to Markov’s inequality of
Chebyshev’s inequality, which both yield only power-law bounds on tail distributions.

In the proof of Theorem 7, we will apply Chernoff’s inequalities. There exist many
versions and extensions of Chernoff’s inequalities, but we will restrict ourselves to the
following.

Definition 2. Let random variables X1, . . . , Xn be independent random variables taking
on values 0 or 1. Further, assume that P (Xi = 1) = pi. Then, if we let X =

∑n
i=1Xi

and E[X] be the expectation of X, then the following bounds hold:

P (X > (1 + δ)E[X]) <
(

eδ

(1+δ)(1+δ)

)E[X]

δ > 0

P (X ≥ (1 + δ)E[X]) ≤ e−E[X]δ2/3 0 < δ ≤ 1

P (X ≤ (1− δ)E[X]) ≤ e−E[X]δ2/2 0 < δ ≤ 1
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If you want to know the taste of a pear, you must
change the pear by eating it yourself. If you want
to know the theory and methods of revolution,
you must take part in revolution. All genuine
knowledge originates in direct experience.

Mao Zedong

3
Theoretical Analysis of SORTING

Sorting is one of the most basic problems in computer science. It is
also the first combinatorial optimisation problem for which computational complexity
results have been obtained in the area of discrete evolutionary algorithms [25, 76].
In [76], sorting is treated as an optimisation problem where the task is to minimise
the unsortness of a given permutation of the input elements. To measure unsortness,
different fitness functions have been introduced in the past and studied with respect
to the difficulty of being optimised by permutation-based evolutionary algorithms.

The problems ORDER and MAJORITY, which we are going to analyse in Chapter 4,
are in a sense easy, as they have isolated problem semantics, and thus allow one to
treat subproblems independently. The next step then is to consider problems that
have dependent problem semantics, and we will do this in the following based on the
SORTING problem. In particular, we are interested in the influence of different bloat-
control techniques on the runtime of different algorithms. As we shall see, the choice
of the bloat-control technique can significantly influence the time needed to solve the
problem.

3.1 Standard Approach Without Bloat-Control

The algorithm (1+1)-GP* (see Algorithm 2.5) that we investigate first has no mech-
anism to control bloat whatsoever. The only feature that can potentially prevent the
solution’s size to become too large is that only strict fitness improvements are accepted.
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Thus, the maximum solution size is limited based on the size of the initial solution and
by the number of possible fitness improvements that can be performed.

Let us recall that the single-objective variant called (1+1)-GP*-single starts with an
initial solution X, and produces in each iteration a single offspring Y by applying the
mutation operator given in Figure 2.4 with k = 1. This means that it is a stochastic
hill-climber that explores its local neighbourhood. In the case of maximisation, Y

replaces X if f(Y ) > f(X) holds. Minimisation problems are tackled in the analogous
way.

3.1.1 Upper Bound

In this section we analyse the performance of our (1+1)-GP* variants on one of the
fitness functions introduced in Section 2.3.

We exploit a similarity between our variants and evolutionary algorithms to obtain
an upper bound on the time needed to find an optimal solution. We use the method
of fitness-based partitions (see Section 2.4). Although the used HVL-Prime operator is
complex, we can obtain a lower bound on the probability of making an improvement
considering fitness improvements that arise from the HVL-Prime sub-operations inser-
tion and substitution. In combination with fitness levels defined individually for the
used sortedness measures, this gives us the runtime bounds in this section.

We denote by Tmax the maximal size of the tree during the run of the algorithm and
show the following theorem.

Theorem 2. The expected optimisation time is O(n3Tmax) for the (1+1)-GP*-single
and (1+1)-GP*-multi, using the sortedness measure INV.

Proof. The proof is an application of the fitness-based partitions method. Based on
the observation that n · (n− 1)/2+1 different fitness values are possible, we define the
fitness levels A0, . . . , An·(n−1)/2 with

Ai = {π |INV (π) = i} .

As there are at most n · (n − 1)/2 advancing steps between fitness levels to be made,
the total expected runtime is upper bounded by the sum over all times needed to make
such steps.

We bound the times by investigating the case when only a particular insertion of
a specific leaf at its correct position achieves an increase of the fitness.1 For this
particular insertion, we consider the lexicographically smallest pair (i, j), i < j, that
is currently incorrect: putting i directly before j makes this pair correct. We now

1For example, the tree with the sequence of leaves (when parsed inorder) l = (n, n, 1, 2, . . . , n− 1)
can only be improved (in a single HVL-Prime step) by inserting a leaf labelled 1 at the leftmost
position.
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have to show that this does not make any other pair which was previously correct,
incorrect. Assume there is a pair (k, l), k < l that was previously correct and has
become incorrect due to the insertion of i. As only i is moved, l = i has to hold, but
we can show that this cannot be the case. k has to be smaller than j, otherwise the
pair cannot become incorrect. Thus, k < i < j has to hold because k < l and i < j and
because of our assumption l = i. (k, j) was correct before the insertion, so it has to
be lexicographically smaller than (i, j). Therefore k is before j in the list of expressed
leaf nodes. As i is placed directly before j and therefore after k, (k, l) cannot become
incorrect.

The probability for HVL-Prime to perform an insertion is 1
3
, and the probability

for the insertion to insert the new leaf at the correct position of the introduced inner
J-node is at least 1

2
. This, together with the probability of selecting the right element

to add, which is bound by 1
n
, and the probability of adding it to the right position in

the tree, which is bound by 1
Tmax

, gives us a lower bound on the probability for doing
such an improvement in (1+1)-GP*-single2

1

3
· 1
2
· 1
n
· 1

Tmax

= Ω

(
1

nTmax

)
.

For the multi-operation variant, the probability for a single mutation operation oc-
curring (including the mandatory one) is 1

e
, which is a constant. Thus we have an

improvement with probability Ω
(

1
nTmax

)
in the multi-operation case as well. There-

fore, the expected optimisation time for both algorithms is upper bounded by

n·(n−1)/2∑
k=0

O (nTmax) = O(n3Tmax).

3.1.2 Local Optima

In the following, we examine our algorithms for the remaining measures of sorted-
ness. We present several worst case examples for HAM, RUN, LAS, and EXC that
demonstrate that (1+1)-GP*-single and (1+1)-GP*-multi can get stuck during the op-
timisation process. This shows that evolving a solution with our GP system is much
harder than working with the permutation-based EA presented in [76], where only the
sortedness measure RUN leads to an exponential optimisation time.

We study worst case solutions that are hard to improve by our algorithms. In the
following, we write down such solutions by the order of the leaves in which they are
visited by the inorder parse of the tree. We restrict ourselves to the case where we
initialise with a tree of size linear in n and show that even this leads to difficulties for

2For example, for the new element to be inserted as the leftmost node of the tree, insertion has to
be chosen, then the old leftmost node has to be chosen, and then the new node has to be placed as
the left sibling of the old leftmost node, not as it’s right sibling.
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the mentioned sortedness measures. Note, that a linear size is necessary to represent
a complete permutation of the given input elements.

For RUN and LAS, we investigate the initial solution Iw1 defined as

Iw1 = (n, n, . . . , n︸ ︷︷ ︸
n+1 instances of n

, 1, 2, 3, . . . , n)

and show that it is hard for our algorithms to achieve an improvement.

Theorem 3. Let Iw1 be the initial solution. Using the sortedness measures RUN
and LAS, the expected optimisation time of (1+1)-GP*-single and (1+1)-GP*-multi is
infinite and eΩ(n), respectively.

Proof. We consider (1+1)-GP*-single first. It is clear that with a single HVL-Prime
application, only one of the leftmost ns can be removed. For an improvement in the
sortedness based on RUN or LAS, all leftmost n + 1 leaves have to be removed at
once. Obviously, this cannot be done by the (1+1)-GP*-single, resulting in an infinite
runtime.

(1+1)-GP*-multi can only improve the fitness by removing the leftmost n+1 leaves.
Hence, in order to successfully improve the fitness, at least n + 1 sub-operations have
to be performed, assuming that we, in each case, delete one of the leftmost ns. Because
the number of sub-operations per mutation is distributed as 1 + Pois(1), the Poisson
random variable has to take a value of at least n. This implies that the probability for
such a step is e−Ω(n) and the expected waiting time for such a step is therefore eΩ(n),
which completes the proof.

Similarly, we consider the tree Iw2 defined as

Iw2 = (n, n, . . . , n︸ ︷︷ ︸
n+1 instances of n

, 2, 3, . . . , n− 1, 1, n)

and show that this is hard to improve the sortedness when using the measures HAM
and EXC.

Theorem 4. Let Iw2 be the initial solution. Using the sortedness measures HAM
and EXC, the expected optimisation time of (1+1)-GP*-single and (1+1)-GP*-multi
is infinite and eΩ(n), respectively.

Proof. We use similar ideas as in the previous proof. Again, it is not possible for
(1+1)-GP*-single to improve the fitness in a single step, as all n + 1 leftmost leaves
have to be removed in order for the rightmost n to become expressed. Additionally, a
leaf labelled 1 has to be inserted at the beginning, or alternatively, one of the n + 1

leaves labelled n has to be replaced by a 1. This results in a minimum number of n+1
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F(X)
(1+1)-GP*

single multi

INV O(n3Tmax) O(n3Tmax)

HAM ∞ Ω
((

n
e

)n)
EXC ∞ Ω

((
n
e

)n)
RUN ∞ Ω

((
n
e

)n)
LAS ∞ Ω

((
n
e

)n)
Table 3.1: SORTING: runtime results for (1+1)-GP* variants.

sub-operations that have to be performed by a single HVL-Prime application, leading
to the lower bound of eΩ(n) for (1+1)-GP*-multi.

The upper and lower bound results for (1+1)-GP* on the problems defined in Sec-
tion 2.2.2 are summarised in Table 3.1.

3.2 Local Optima and the Parsimony Approach

In this section, we consider simple variable-length evolutionary algorithms using the
parsimony approach. The single-objective variant called (1+1)-GP (see Algorithm 2.6
for the single-mutation variant) is identical to the (1+1)-GP* from Section 3.1, with
the exception that, in the case of maximisation, Y replaces X if f(Y ) ≥ f(X) holds.
Again, minimisation problems are tackled in the analogous way. Furthermore, in order
to introduce the parsimony pressure, we employ the multi-objective variants of the
presented sortedness measures, i.e. MO-EXC, MO-RUN, etc.

3.2.1 Upper Bounds

We start our analyses with the cases for which polynomial runtime bounds can be
proven. The idea behind the proof of the expected polynomial optimisation time on
MO-LAS is as follows. Given a tree T with its tree size of Tinit, and its sortedness
LAS(T ) = k < n. For such a tree, we always have at least one of the following two
ways to create a new tree that is accepted. First, we can improve the sortedness by
extending the longest ascending sequence. Or second, we can reduce the size of the
tree, if the tree has more than k leaves. If the latter is the case, we can trim the number
of leaves down to k, thus eliminating blocking elements and duplicates, and then we
can build up the sought permutation. Thus, we can now deal with trees such as Iw1

from Section 3.1.2, which have previously been problematic.
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Theorem 5. The expected optimisation time of (1+1)-GP-single on MO-LAS is
O (Tinit + n2 log n).

Proof. For the analysis, we consider two phases. First, we show that we arrive at a
tree with fitness k and k leaves after O (Tinit + n log n) steps. Afterwards, we analyse
the time needed to get from there to the optimal solution.

1. Phase. Initially, let LAS(T ) = k be the fitness of the current tree T with s

leaves. Then, the distance to the desired tree size is d = s− k. As the probability for
HVL-Prime to perform a deletion is 1

3
, the probability to reduce the size via a deletion

in a single mutation step can be lower bounded by

1

3
· s− k

s
=

1

3
· d

d+ k
≥ 1

3
· d

d+ n
.

Where the term s−k
s

comes from the fact that we need to select one of the redundant
elements. Note that d cannot increase as for d to increase, k would have to decrease,
which is impossible, as the primary objective is the maximisation of the LAS-value.
Alternatively, d could increase if s increases. However, the tree size can only increase if
the last accepted step increased the sortedness as well. In a single step, if s increases by
1, then k had to increase by 1 as well, which leaves the distance s− k = d unchanged.

Now, with the fitness-based partitions method over the distance d, we can bound
the expected runtime for this first phase:

Tinit∑
d=1

3
d+ n

d
= 3

n∑
d=1

d+ n

d
+ 3

Tinit∑
d=n+1

d+ n

d

≤ 3
n∑

d=1

d+ n

d
+ 3

Tinit∑
d=n+1

2

= O (n log n+ Tinit) .

2. Phase. Next, we investigate the time needed in the second phase to arrive at
the optimum. Therefore, we again apply the above-described fitness-based partitions
method. We define the fitness levels A1, . . . , An with Ai = {T |LAS(T ) = i}. As there
are at most n−1 advancing steps between fitness levels to be made, the total expected
runtime is upper bounded by the sum over all expected times needed to make such
steps.

After the initial trimming phase, we do not have any blockages that prevent ele-
ments from being expressed at their correct positions. Therefore, the existing longest
ascending sequence can be extended by inserting any of the n− k unblocked elements
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that are missing in the sequence into its correct position. The probability for a single
of such an insertion to happen is at least

1

3
· 1
2
· 1
n
· n− k

n
=

1

6
· n− k

n2
.

Thus, the expected runtime of the second phase can then be bounded from above by

n−1∑
k=1

6
n2

n− k
= 6n

n−1∑
k=1

n

n− k
= O

(
n2 log n

)
.

Hence, the expected optimisation time of the algorithm is upper bounded by
O (Tinit + n2 log n).

Theorem 6. The expected optimisation time of (1+1)-GP-single on MO-INV is
O (Tinit + n5).

Proof. For our analysis, we draw upon results from the Theorems 2 and 5. First,
after O (n log n+ Tinit) steps, we arrive at a non-redundant tree. Next, as we can
have at most n2 fitness-improving insertions, the maximum tree size Tmax is bounded
by O (n+ n2) after the initial trimming phase. Consequently, the probability for a
fitness-improving mutation is bounded by Ω

(
1
n3

)
. Thus, we can now bound the overall

optimisation time by

O (n log n+ Tinit) +

n·(n−1)/2∑
k=0

O
(
n3
)

= O (n log n+ Tinit) +O(n5)

= O (Tinit) +O(n5)

Achieving a similar bound for the multi-mutation variant is not as easy, as the in-
sertion of a missing element (i.e. a fitness improvement), may be accompanied by
the insertion of many elements that are already present. Due to the Poisson dis-
tributed number of operations performed by HVL-Prime within (1+1)-GP-multi, the
algorithm’s typical local behaviour is difficult to predict.

Therefore, we take an alternate approach, by looking at a sequence of steps t =

poly(n). Let Tinit to be a tree with size |Tinit| = poly(n). The failure probability
for inserting at most nϵ in a single HVL-Prime operation is e−Ω(nϵ). Furthermore,
given any initial tree, we can have at most n improvements of the sortedness when the
measurements LAS and EXC are used. Now, we compute a bound of the tree size.
Looking at n mutations that increase the fitness, the failure probability for adding at
most nnϵ = n1+ϵ leaves in t time steps is exponentially small: te−Ω(nϵ) = e−Ω(nϵ). Thus,
the tree size does not exceed Tmax = Tinit + n1+ϵ within t = poly(n) time steps, with
high probability.
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Theorem 7. Let ϵ > 0 be a constant. The optimisation time of (1+1)-GP-multi on
MO-LAS is O (Tinit + n2 log n), with probability 1− o(1).

Proof. We will split the proof into two parts: first, we bound the total time needed
for deletions during a run, and second, we investigate the time needed to perform the
necessary insertions to find the optimal solution.

First, given a solution where km elements have to be removed in order to arrive
at a non-redundant tree after the m-th fitness-increasing insertion. In the following,
let i be the number of redundant elements in the tree, and let j be the number of
non-redundant elements in the tree.

Stage 1, i ≥ n+ 1.
As the probability for a single operation is 1

e
, the probability for the deletion of a

single redundant element at any time is lower bounded by

1

3e

i

i+ j
≥ 1

3e

i

i+ n
≥ 1

3e

1

2
=

1

6e
.

Then, the expected time to delete km elements is upper bounded by 6ekm. Further-
more, as we know that we can delete at most Tmax leaves over a full optimisation run,∑n

i=1 ki ≤ Tmax. Thus, we can bound the expected time needed for all deletions (when
i ≥ n+ 1) by 6eTmax.

Let X1, . . . , Xd be independent random variables taking value 1 with Prob(Xi = 1) =
1
6e

if an element is deleted (in time step 1 ≤ t ≤ d), and 0 otherwise. With Chernoff’s
inequality (with δ = 1, see Section 2.4) we get that

Prob (X ≥ 12eTmax) = Prob
(
X ≥ 12e(Tinit + n1+ϵ)

)
≤ e−2e(Tinit+n1+ϵ) ≤ e−Ω(n1+ϵ).

Stage 2, i ≤ n.
To bound the number of steps, we apply the technique of multiplicative drift with

tail bounds (see Section 2.4).
In our case, Φ(x) = i is a feasible ν-drift function on the number of redundant

elements (with implicit constant δ = 1). For the optimal solutions (”no redundant
elements left”) Φ(x) = 0 holds as required, Φ(x) ≥ 1 holds for all non-optimal solu-
tions, and E[Φ(xnew)] ≤

(
i− i

6en

)
=
(
1− 1

ν(n)

)
Φ(x). Thus, ν(n) = 6en and δ = 1.

Consequently, we get that the time needed for all deletions (when i ≤ n) during a run
exceeds 6en(lnn+ n lnn) with probability at most n−c. As these deletion phases take
place at most n times, the resulting overall deletion time does not exceed O(n2 log n)

with probability 1− n−c+1 = 1− o(1).
Next, we consider the time necessary to perform the insertions of the missing ele-

ments, once the insertion was unblocked. We will again apply the multiplicative drift
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with tail bounds, as used above. Note, that the situation is very similar: instead of re-
ducing the number of redundant elements, we are now reducing the number of missing
elements.

Let j be the number of elements currently missing. As the probability for a single op-
eration is 1

e
, the probability for a single insertion of a missing element to happen at the

required position is lower bounded by 1
3e

1
2n

j
n
= j

6en2 . With E[Φ(xnew)] ≤
(
j − j

6en2

)
=(

1− 1
ν(n)

)
Φ(x) we get, ν(n) = 6en2 and δ = 1. Consequently, by applying Theorem 1,

we get that the time needed for all insertions during a run exceeds 6en2(lnn+ n lnn)

with probability at most n−c. Thus, the resulting overall time needed for all insertions
does not exceed O(n2 log n) with probability 1− n−c = 1− o(1).

To conclude, based on our analysis of the necessary deletions and insertions, the op-
timisation time of (1+1)-GP-multi on MO-LAS is O (Tinit + n2 log n), with probability
1− o(1).

3.2.2 Local Optima

In the following, we show that the parsimony approach can still lead to local optima
for various types of sortedness measure.

Let Iw3 = (n, 2, 3, . . . , n − 3, n − 2, n − 1, 1) be the initial solution. We point out
that this is a local optimum for (1+1)-GP-single on MO-EXC leading to an infinite
optimisation time.

Theorem 8. Let Iw3 be an initial solution. Then the optimisation time of
(1+1)-GP-single on MO-EXC is infinite.

Proof. The individual Iw3 has an EXC-value of 1 and a length of n. In order to reduce
the fitness down to 0, it would be necessary to move the n from the head of the
permutation to its end.

For this to happen, deletions and substitutions cannot be considered, as they would
produce incomplete permutations, and incomplete permutations have EXC-values of
at least 2.

Similarly, this situation cannot be solved using a single insertion: it is not possible
to introduce n at its correct position within the permutation, as the existing n is
preventing the new one from becoming expressed.

Therefore, none of the available operations can improve the number of elements
sitting at their correct (relative) position via a single mutation. Thus, (1+1)-GP-single
takes infinitely long, when initialised with Iw3.

We continue by investigating the sortedness measure RUN. Without loss of general-
ity, let n be even and Iw4 =

(
n
2
+ 1, n

2
+ 2, . . . , n− 1, n, 1, 2, . . . , n

2
− 1, n

2

)
be an initial

solution. The following theorem shows that Iw4 is a local optimum for (1+1)-GP-single
on MO-RUN.
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Theorem 9. Let Iw4 be the initial solution. Then the optimisation time of
(1+1)-GP-single on MO-RUN is infinite.

Proof. The individual Iw4 has a RUN-value of 2, which cannot be improved via a
single insertion: n/2 elements have to change their positions in the inorder parsed list
that is used for the computation of the RUN-value. Furthermore, a single deletion
or substitution results in a worse sortedness value as one element is then missing
(as defined in Section 2.2.2). Therefore, the runtime of the single-operation case of
(1+1)-GP is infinite, when initialised with this particular individual.

Finally, we consider the sortedness measure HAM and investigate the initial solution
Iw5 = (1, n− 2, 3, 4, 5, . . . , n− 3, 2, n− 1, n) . We show that this is a local optimum for
MO-HAM.

Theorem 10. Let Iw5 be the initial solution. Then the optimisation time of
(1+1)-GP-single on MO-HAM is infinite.

Proof. The individual Iw5 has the elements 2 and n−2 at incorrect positions, resulting
in a HAM-value of n − 2. It is not possible to maintain the HAM-value (or improve
it) via deletions, as they decrease the number of elements at correct positions. Substi-
tutions can also not maintain the HAM-value. A substitution of the n− 2 by 2 would
result in the elements to the right to shift away from their correct position as in both
cases the element at the third position would no longer get expressed. This leaves only
the option of using insertions, in order to generate an individual that is accepted. The
element n − 2 cannot be introduced successfully at its correct position as its current
occurrence is blocking a later expression. If 2 is introduced at its correct position, then
the resulting permutation is (1, 2, n− 2, 3, 4, 5, . . . , n− 3, n− 1, n) as the second two
no longer gets expressed, and the corresponding HAM-value for this permutation is
n− 3.

Thus, the runtime of the single-operation case of (1+1)-GP is infinite, when ini-
tialised with this particular individual.

3.3 Multi-Objective Approach

In this section, we consider the Simple Evolutionary Multi-Objective Genetic Program-
ming (SMO-GP) algorithm introduced by Neumann [62] and motivated by the SEMO
algorithm for fixed length representations by Laumanns et al. [55]. Let us recall that
SMO-GP (see Algorithm 2.7) is a population-based approach that starts with a single
solution and keeps in each iteration a set of non-dominated solutions obtained during
the optimisation run. This set of solutions constantly approximates the true Pareto
front, i.e. the set of optimal trade-offs between fitness and complexity. In each it-
eration, it picks one solution uniformly at random and produces one offspring Y by
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mutation. Y is introduced into the population iff it is not weakly dominated by any
other solution in P . If Y is added to the population all individuals that are dominated
by Y are discarded.

In the following, we analyse the performance of the SMO-GP variants on each one of
the fitness functions introduced in Section 2.2.2. In particular, we analyse the expected
number of iterations before the set of non-dominated solutions becomes the true Pareto
front. We call this the expected optimisation time of SMO-GP algorithms.

The following lemma bounds the expected time until the empty solution has been
included into the population, when considering an arbitrary optimisation problem:

Lemma 1 (Neumann [62]). Let Iinit be the size of the initial solution and k be the
number of different fitness values of a problem F . Then the expected time until the
population of SMO-GP-single and SMO-GP-multi applied to MO-F contains the empty
solution is O (kIinit).

Theorem 11. The expected optimisation time of SMO-GP-single and SMO-GP-multi
is O(nIinit + n3 log n) on MO-EXC and MO-RUN, and O(nIinit + n4) on MO-HAM.

Note that for all three problems, only solutions of complexity 2i − 1, 1 ≤ i ≤ n,
and the empty solution can be Pareto optimal. For RUN, these are solutions X with
C(X) = 2i−1 and RUN(X) = n+1− i, 1 ≤ i ≤ n, and the empty tree with C(X) = 0

and RUN(X) = n+ 1.3

Proof. In the following, we will first prove the theorem for MO-RUN. The proofs for
MO-EXC and MO-HAM follow the same structure.

RUN has n + 1 different fitness values. Using Lemma 1, the empty solution is
produced after an expected number of O (nIinit) steps. Note that the empty solution
will never be removed from the population as it is the unique solution having complexity
zero.

In the following steps, we will bound the time needed to discover the whole Pareto
front, once the empty solution is introduced into the population. Let us assume that
the population contains all Pareto optimal solutions with complexities 2j−1, 1 ≤ j ≤ i.
Then, a population that includes all Pareto optimal solutions with complexities 2j−1,
1 ≤ j ≤ i + 1, can be achieved by producing a solution Y that is Pareto optimal and
that has complexity 2(i + 1) − 1. Y can be obtained from a Pareto optimal solution
X with C(X) = 2i− 1 by inserting any of the n− i missing elements into the correct
position. This operation produces from a solution of complexity 2i − 1 a solution of
complexity 2(i+ 1)− 1 = 2i+ 1, as one leaf node and one inner node are added.

Based on this idea we can bound the expected optimisation time once we can bound
the probability for such steps to happen. Choosing X for mutation has probability at

3For the sake of readability, we will omit the empty solution in the remainder of this section when
addressing sets of trees that cover an interval of complexities.
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least 1/(n+1) as the population size is upper bound by n+1. Next, the mutation step
carrying out just one operation happens with at least 1/e, and the inserting operation
of HVL is chosen with probability 1/3. As n − i out of the n elements are missing,
any of those can be inserted. However, the correct position for such a randomly chosen
element has to be chosen, in order to produce the Pareto optimal solution of complexity
i+1. This probability is at least 1/2 · 1/n, as the number of leaf nodes is bound by n,
and the probability to insert as the correct child of the newly introduced inner node is
at least 1/2. Thus, the total probability of such a generation is

1

n+ 1
· 1
3e
· 1

2n
· n− i

n
.

Now, we use the method of fitness-based partitions (see Section 2.4) according to the
n+1 different fitness values of i. Thus, as there are only n Pareto-optimal improvements
possible once the empty solution is introduced into the population, the expected time
until all Pareto optimal solutions have been generated is:

n∑
i=0

(
1

n+ 1
· 1
3e
· 1

2n
· n− i

n

)−1

= 6en2(n+ 1) ·
n∑

i=0

1

n− i

= O(n3 log n).

Taking into account the expected time to produce the empty solution, the ex-
pected time until the whole Pareto front of MO-RUN has been computed is
O (nIinit + n3 log n).

The proof for MO-EXC follows the same structure. First, note that if the ordering
within the permutation requires an exchange, then this individual is dominated by
individuals of same complexity that require fewer exchanges. Just as with MO-RUN, let
us assume that the population contains all Pareto optimal solutions with complexities
2j − 1, 1 ≤ j ≤ i. Then, a population which includes all Pareto optimal solutions
with complexities 2j − 1, 1 ≤ j ≤ i+ 1, can be achieved by inserting any of the n− i

missing elements into the correct position of the Pareto optimal individual X with
C(X) = 2i− 1. The probability for such a step to happen is at least 1

n+2
· 1
3e
· 1
2n
· n−i

n
.

Now, as n+2 different EXC-values are possible, and by summing up the waiting times
as done for MO-RUN, the expected optimisation time is O(nIinit + n3 log n).

Similarly, we can prove an upper bound for MO-HAM. First, note that each Pareto
optimal solution with HAM-value i represents a perfectly sorted permutation of the i

elements 1, . . . , i. Just as above, let us assume that the population contains all Pareto
optimal solutions with complexities 2j − 1, 1 ≤ j ≤ i. Then, a population which
includes all Pareto optimal solutions with complexities 2j − 1, 1 ≤ j ≤ i + 1, can be
achieved by inserting the element i+ 1 into its correct position (i. e., as the rightmost
leaf) in the Pareto optimal individual X with HAM(X) = C(X) = 2i − 1. The
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probability for such a step to happen is at least 1
n+1
· 1

3e
· 1

2n
· 1

n
= Ω

(
1
n3

)
and the

corresponding waiting time is O(n3). There are n + 1 different HAM-values. This
implies that the expected optimisation time is O(nIinit + n4).

Theorem 12. The expected optimisation time of SMO-GP-single and SMO-GP-multi
is O(n2Iinit + n5) on MO-INV, and O(nIinit + n3 log n) on MO-LAS.

Proof. Our analysis follows the proof of Theorem 11. First, as INV has n(n−1) different
fitness values, using Lemma 1, the empty solution is produced after an expected number
of O (n2Iinit) steps. First, note that each Pareto optimal solution with complexity 2i−1
has an INV-value of

∑i−1
1 i, if i ≥ 2.4

Second, as above, we will bound the time needed to discover the whole Pareto front,
once the empty solution is introduced into the population. Let us assume that the
population contains all Pareto optimal solutions with complexities 2j − 1, 1 ≤ j ≤ i.
Then, a population that includes all Pareto optimal solutions with complexities 2j−1,
1 ≤ j ≤ i + 1, can be achieved by producing a solution Y that is Pareto optimal and
that has complexity 2(i + 1) − 1. Y can be obtained from a Pareto optimal solution
X with C(X) = 2i− 1 by inserting an element that increases the INV-value by i− 1.
This operation produces from a solution of complexity 2i− 1 a solution of complexity
2(i+ 1)− 1 = 2i+ 1, as one leaf node and one inner node are added. The probability
of this operation to happen can be bounded by 1

n(n−1)/2+1
· 1
3e
· 1
2n
· 1
n
.

Thus, as there are only n Pareto-optimal improvements possible once the empty
solution is introduced into the population, the expected time until all Pareto optimal
solutions have been generated is:

n∑
i=0

(
1

n(n− 1)/2 + 1
· 1
3e
· 1

2n
· 1
n

)−1

= 6en5 = O(n5).

Similarly, we can prove an upper bound for MO-LAS. First, note that each Pareto op-
timal solution with LAS-value i represents a perfectly sorted permutation of i elements.
Next, as only n different LAS-values are possible, the empty solution is produced after
an expected number of O (nIinit) steps. Just as above, let us assume that the pop-
ulation contains all Pareto optimal solutions with complexities 2j − 1, 1 ≤ j ≤ i.
Then, a population that includes all Pareto optimal solutions with complexities 2j−1,
1 ≤ j ≤ i + 1, can be achieved by inserting any of the missing n − i elements into its
correct position in the Pareto optimal individual X with LAS(X) = C(X) = 2i− 1.

Thus, as there are only n Pareto-optimal improvements possible once the empty
solution is introduced into the population, the expected time until all Pareto optimal
solutions have been generated is:

4For the sake of readability, we will omit in the following the special cases for i = 0 and i = 1.

33



F(X)
(1+1)-GP*, F(X) (1+1)-GP, F(X)

single multi single/multi

INV O(n3Tmax) O(n3Tmax)

?

LAS ∞ Ω
((

n
e

)n)
HAM ∞ Ω

((
n
e

)n)
EXC ∞ Ω

((
n
e

)n)
RUN ∞ Ω

((
n
e

)n)
Table 3.2: Summary of computational complexity bounds for single-objective variants. The
question mark indicates combinations for which we do not know any bounds.

n∑
i=0

(
1

n+ 1
· 1
3e
· 1

2n
· n− i

n

)−1

= 6en2(n+ 1) ·
n∑

i=0

1

n− i

= O(n3 log n).

3.4 Experimental Supplements to the Computational Com-
plexity Analysis

In this section, we carry out experimental investigations about the runtime of different
variable-length algorithms over the presented fitness functions. The purpose of this
analysis is threefold

• to complement the theoretical results with conjectures about the expected opti-
misation times for the variants lacking a formal proof,

• to assess the impact on the runtime of two collected measures, namely the maxi-
mal tree size Tmax and, for SMO-GP, the maximal population size Pmax encoun-
tered during an optimisation run, and

• to give useful insight for guiding further rigorous theoretical analysis.

A similar experimental approach has been employed by [8] and Lässig and Sudholt
[53]. In addition, we have used the same approach to complement theoretical investi-
gations on WORDER and WMAJORITY (see Chapter 4).

3.4.1 Theoretical results

As already stated, the computational complexity analysis of genetic programming anal-
yses the so-called expected optimisation time of an algorithm. In single-objective con-
texts, such as the one of (1+1)-GP, the expected optimisation time measures the num-
ber of fitness evaluations until an algorithm has produced the first optimal solution,
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F(X)
(1+1)-GP, MO-F(X) SMO-GP, MO-F(X)

single multi single/multi

INV O(Tinit + n5) ? O
(
n2Tinit + n5

)
LAS O(Tinit + n2 log n) O(Tinit + n2 log n) † O(nTinit + n3 log n)

HAM ∞ ? O(nTinit + n4)

EXC ∞ ? O(nTinit + n3 log n)

RUN ∞ ? O(nTinit + n3 log n)

Table 3.3: Summary of computational complexity bounds for multi-objective variants. †
indicates a bound that holds with probability 1−o(1). Question marks indicate combinations
for which we do not know any bounds.

which is a common performance metric in evolutionary computation. Table 3.2 sum-
marises the theoretical findings of Section 3.1 about our single-objective setups. In
multi-objective algorithms, such as SMO-GP, however, the number of evaluations un-
til the first optimal solution is not informative enough, as the goal is to reconstruct or
approximate as much as possible the true Pareto front, i.e. the whole set of optimal
trade-offs between objectives. In these context, the number of evaluations to produce
the complete front is considered instead. Table 3.3 summarises the theoretical findings
of Sections 3.2 and 3.3 for our multi-objective setups.

As can be observed from the tables, all bounds take into account tree sizes of some
kind: either the maximum solution size Tmax, or the size of the initial solution Tinit.
In particular, the runtime of (1+1)-GP, F(X) depends on the maximum tree size Tmax,
since the expected time to get to the optimal solution grows larger and larger as the
tree grows in size, and the runtimes of several MO-F(X) variants are dependent on
the initial tree size Tinit as often the first step of the proof involves deconstructing the
original solutions until a tree of size zero is found.

3.4.2 Experimental setup

In our experimental investigations, we consider (1+1)-GP on F(X), (1+1)-GP on MO-
F(X), (1+1)-GP* on F(X), and SMO-GP on MO-F(X). Each GP algorithm is run
in its single-operation and multi-operation variants, and we investigate problems of
sizes n = 20, 40, 60, . . . , 200. For the initialisation of the individuals, we consider the
schemes init0 (empty tree) and initn (tree with n leaves constructed by applying n

insertion mutations at random positions on an initially empty tree). In total, our
experiments span ten problems: INV, HAM, RUN, LAS and EXC in their single and
multi-objective variants. All the experiments were performed on AMD Opteron 250
CPUs (2.4GHz), on Debian GNU/Linux 5.0.8, with Java SE RE 1.6 and were given a

35



maximum runtime of 3 hours and a budget of 109 evaluations each. Furthermore, each
experiment has been repeated 200 times, which results in a standard error of the mean
(the standard deviation of the sampling distribution) of 1/

√
200 = 7%. As a curiosity,

the whole set of experiments took about 30 CPU-years to complete.
The complete source code of the employed framework is available on Bit-

Bucket (Mercurial, at https://bitbucket.org/tunnuz/gpframework), on GitHub
(Git, https://github.com/tunnuz/gpframework) and Google Code (Subversion at
http://code.google.com/p/gpframework).

3.4.3 (1+1)-GP variants

We now analyse the experimental results on (1+1)-GP variants with respect to the
maximum tree size obtained during execution and the required optimisation time.

Tree size

As we have seen, the known theoretical bounds for the (1+1)-GP variants presented in
Section 3.2 depend on Tmax, the maximal solution size that is encountered during the
run of the algorithm. It is important to observe that the maximal solution size is not a
parameter that is set in advance, but rather a measure that emerges from the nature of
the employed fitness function and mutation operators. In addition, the can might in-
volve a degree of randomness, which makes Tmax, and thus bloating, extremely difficult
to predict. For this reason, we investigate the maximum solution size experimentally
in order to detect when bloat occurs within the analysed algorithms. As statistics,
we employ the median (the second quartile) as a measure of central tendency and the
interquartile range (iqr, the distance between the first and the third quartiles) as a
measure of variance.

Table 3.4 reports results for n = 40, 80, 160, but similar results hold for the other
input sizes. The missing data (-) represent experiments for specific input sizes where
the algorithms did not make it to an optimal solution within the time or evaluations
bound for more than 50% of the repetitions. For the sake of clarity we recall that
(1+1)-GP*, F(X) accepts a new solution only if the fitness is strictly better than
the previous one, while (1+1)-GP, F(X) always accepts a solution of the same value.
(1+1)-GP, MO-F(X) accepts a solution of the same fitness only if the complexity is
lower.

We first analyse Tmax for the single-operation variant, where a single mutation oper-
ator is applied at each step (upper half of Table 3.4). Here (1+1)-GP* and (1+1)-GP,
MO-F(X) share similar tree sizes of about 2n− 1 (sometimes 2n+ 1), which is a min-
imum for the optimal solution, on all fitness values but INV, where (1+1)-GP, MO-
F(X) obtains a tree size of about 2.3n on both initialization schemes and (1+1)-GP*
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k F(X) n
(1+1)-GP*, F(X) (1+1)-GP, F(X) (1+1)-GP, MO-F(X)
init0 initn init0 initn init0 initn

m iqr m iqr m iqr m iqr m iqr m iqr
k=

1

INV
40 307 46 327 33.5 528 185.5 528 202.5 95 4 97 5.5
80 821 79 849 105 1259 472 1269 473 189 8 191 6
160 - - - - 2645 612 2688 627.5 375 10 381 14

LAS
40 79 0 - - 525 212 592 265.5 79 0 79 0
80 159 0 - - 1352 508.5 1401 526.5 159 0 159 0
160 319 0 - - 2670 527.5 - - 319 0 319 0

HAM
40 79 0 - - 1665 1042.5 1672 723.5 79 0 79 0
80 159 0 - - - - - - 159 0 159 0
160 319 0 - - - - - - 319 0 319 0

EXC
40 81 0 - - 1573 908 - - 81 2 - -
80 161 0 - - - - - - 161 0.5 - -
160 321 2 - - - - - - 321 0 - -

RUN
40 79 0 - - - - - - 79 0 - -
80 159 0 - - - - - - 159 0 - -
160 319 0 - - - - - - 319 0 - -

k=
1+

Po
is(

1)

INV
40 249 33 259 34 512 183 543 199.5 107 8 112 10
80 611 48 627 58 1245 490 1308 435.5 213 12.5 219 14
160 - - - - 2793 733 2821 700 419 18 437 22

LAS
40 95 10 - - 555 276.5 560 261.5 79 2 79 2
80 187 10.5 - - 1334 592 1382 420.5 159 2 159 2
160 - - - - 2893 698 2789 498 319 2 319 2

HAM
40 87 6 - - 1767 926 1833 1042 79 2 79 2
80 177 8 - - - - - - 159 0 159 2
160 353 11.5 - - - - - - 319 2 319 2

EXC
40 93 6 - - 1852 1042.5 1964 964.5 81 0 83 2
80 - - - - - - - - 161 2 - -
160 - - - - - - - - - - - -

RUN
40 - - - - - - - - - - - -
80 - - - - - - - - - - - -
160 - - - - - - - - - - - -

Table 3.4: Maximum tree sizes encountered until the individual Xopt with optimal fitness
is found. Shown are median m and median interquartile ranges iqr.

shows a tree size close to 10n. On the other hand, (1+1)-GP, F(X) appears cursed
by bloating in all fitness functions, with tree sizes above 12n. Nonetheless, unlike
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(1+1)-GP*, (1+1)-GP, F(X) seems independent on the employed initialization scheme
and can reach optimal solutions for INV and LAS even with initn where (1+1)-GP*
fails. As for the interquartile range, (1+1)-GP, MO-F(X) appears to be the most sta-
ble algorithm with an iqr of zero on all fitness functions but INV. Overall, the best
algorithm with respect to tree size, interquartile range and robustness with respect to
initialization schemes is (1+1)-GP with parsimony (MO-F(X) variant).

As for the multi-operation variant, i.e. where k = 1 + Pois(1) applications of each
mutation operator are executed at each step, tree sizes increase in every algorithmic
variant on INV. On the other fitness functions, the negative impact of multiple op-
erations appears especially on the F(X) variants, while (1+1)-GP, MO-F(X) is less
susceptible to this parameter. Overall, the interquartile range in the tree size increases
along with it. Again, with respect to tree size, interquartile range and initialization
scheme independence the best algorithm is (1+1)-GP with parsimony (MO-F(X) vari-
ant).

The plots in the remainder of this chapter indicate the asymptotic behaviour of the
investigated measures. In particular, they include

• the distributions of values, represented as box plots,

• the failure rate, i.e. the fraction of repetitions that did not make it to the end
because of the imposed timeout or evaluations budget, represented as different
colour tones of the box plots,

• two blue-toned lines representing, for each input size, the medians of the distri-
butions divided by some polynomial, whose interpretation gives an indication of
the asymptotic behaviour of the measure.

In order to deduce the asymptotic behaviour of a measure, one must look at the
polynomial line that is closest to constant (i.e. the ’most horizontal’ one). A hori-
zontal line means that, barred a multiplicative factor, the measure behaves like the
corresponding polynomial, at least for the analysed input sizes. In all plots, we have
excluded the input sizes where a failure rate above 50% did not allow to compute a
reliable median (and thus to obtain a reliable estimate on the asymptotic behaviour).

Figures 3.2 and 3.1 show the distribution of Tmax (1+1)-GP for increasing values of
n, respectively with the init0 and initn initialization schemes.

From the figure Tmax looks close to linear for (1+1)-GP, MO-F(X) variants on both
initialization schemes and mutation variants, however its behaviour looks closer to
n log n on INV and LAS and as n2 for HAM and EXC in the initn initialization scheme
with both mutation variants. As for (1+1)-GP with init0, the variant accepting only
strict improvement reaches a Tmax linear in n for all fitness functions except INV and
the one accepting neutral moves a Tmax growing as n log n in INV and LAS. Overall
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Figure 3.1: Maximum tree sizes Tmax observed when init0 is used. Note that no data is
shown, when less than 50% of the runs were successful. Note that several algorithms have
significant problems solving RUN, and as a consequence no distributions of Tmax can be
given. The same holds for larger instances of HAM and EXC.

the init0 initialization scheme seems to be beneficial in terms of failure rate and growth
of Tmax.
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Figure 3.2: Maximum tree sizes Tmax observed when initn is used. Note that no data is
shown, when less than 50% of the runs were successful. When one compares these results
with those of Figure 3.1, it becomes obvious that the initialisation with n leaf nodes can
render the problem unsolvable.

Average case optimisation time

Figures 3.3 and 3.4 show the distributions of the required number of evaluations to
reach the first optimal solution for the (1+1)-GP variants respectively in the init0 and
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3.4. EXPERIMENTAL SUPPLEMENTS 41

Figure 3.3: Number of evaluations required by (1+1)-GP (initialised with init0) until the
individual Xopt with optimal fitness is found, shown as box plots. Note that no data is
shown, when less than 50% of the runs were successful. Consequently, one can see that the
algorithms have problems solving even small instances of RUN. The * mark configurations in
which the method to find the upper and lower polynomials is unreliable because of inflections
in the number of evaluations for some input sizes.



42 CHAPTER 3. THEORETICAL ANALYSIS OF SORTING

Figure 3.4: Number of evaluations required by (1+1)-GP (initialised with initn) until the
individual Xopt with optimal fitness is found, shown as box plots. Note that no data is shown,
when less than 50% of the runs were successful. When one compares these results with those
of Figure 3.3, it becomes obvious that the initialisation with n leaf nodes can render the
problem unsolvable.



Line style meaning
solid n2 log n

long dashed n3

short dashed n3 log n

dot dashed n4

short dot dashed n5

dotted n6

Table 3.5: Meaning of line styles in Figures 3.3 and 3.4.

initn initialization schemes. The meaning of line styles in the figures is explained in
Table 3.5.

By analysing the results it can be noted that overall the init0 initialization scheme is
beneficial for (1+1)-GP*, F(X) both in single- and multi-operation modes, allowing it
to optimise every fitness function in single-operation mode and to reach some optima for
all fitness functions except RUN for multi-operation mode. On the contrary, (1+1)-GP
does not seem to be influenced significantly by a particular choice of initial individuals.
The performances of the two initialization schemes are identical for INV across every
algorithmic variant but consistently worse for initn in all the other fitness values, at
least in terms of failure rate. In general, initializing the population with full trees
appears to be an obstacle to optimisation. Also, multi-operation when applied with
the init0 scheme appears to be detrimental.

The theoretical bounds are confirmed by the experiments, suggesting that they might
be tight.

3.4.4 SMO-GP

We now analyse the experimental results on SMO-GP variants with respect to the
maximum tree and population size obtained during execution and the expected opti-
misation time.

Table 3.6 shows the maximum tree sizes and maximum population sizes that were
observed up to the following two events. First, until the individual Xopt with optimal
fitness is found, and secondly, until the population represents the entire true Pareto
front PPareto.

Tree size

With respect to maximum tree size we can note that with both init0 and initn initial-
ization schemes and both single- and multi-operation variants the tree size is always
very close to the theoretical minimum of 2n − 1 except for INV in which we have an
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F(X) n

maximum tree size max. population size

to Xopt to PPareto to Xopt to PPareto

m iqr m iqr m iqr m iqr

SM
O
-G

P,
w
ith

k=
1 in
it 0

INV 80 169 4 169 4 85 1 85 1

LAS 80 159 0 159 0 81 0 81 0

HAM 80 159 0 159 0 81 0 81 0

EXC 80 159 2 159 2 81 1 81 1

RUN 80 159 0 159 0 81 0 81 0

in
it n

INV 80 173 6 173 6 86 2 86 2

LAS 80 159 0 159 0 81 0 81 0

HAM 80 159 0 159 0 81 0 81 0

EXC 80 159 2 159 2 81 1 81 1

RUN 80 159 2 159 2 81 0 81 0

SM
O
-G

P,
w
ith

k=
1+

Po
is(

1)

in
it 0

INV 80 183 8 183 8 89 2 89 2

LAS 80 159 2 159 2 81 0 81 0

HAM 80 159 2 159 2 81 0 81 0

EXC 80 161 2 161 2 81 1 81 1

RUN 80 161 2 161 2 81 0 81 0

in
it n

INV 80 185 10 185 10 89 3 89 3

LAS 80 159 2 159 2 81 0 81 0

HAM 80 159 2 159 2 81 0 81 0

EXC 80 161 0 161 0 81.5 1 81.5 1

RUN 80 161 2 161 2 81 0 81 0

Table 3.6: Maximum tree sizes and maximum population sizes encountered for SMO-GP
on the multi-objective problem variants: (1) until the individual Xopt with maximum fitness
is found, (2) until the population represents the entire true Pareto front PPareto. Shown are
median m and interquartile ranges iqr.

increase of about 6% in single operation mode and about 30− 37% in multi-operation
mode. The interquartile range in this data is minimal, often zero in single operation
mode and up to 5% in multi-operation mode. It is worth observing that the maximum
attained tree size is quite independent on the used initialization scheme.

Population size

While Tmax already appears as a factor in the computational complexity bounds for
the (1+1)-GP variants, the impact of Pmax on SMO-GP is not yet completely clear. It
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Figure 3.5: Maximum population size for INV in SMO-GP, possibly quadratic but practi-
cally linear in n.

Line style meaning
solid n3

long dashed n3 log n

dashed n4

dot dashed n5

Table 3.7: Meaning of line styles in Figure 3.6.

is reasonable to presume that for large populations, e.g. exponential in n, the expected
optimisation time grows due to the lower probability of selecting the correct individual
to improve. Unfortunately it is not obvious how often such a large population occurs
since it depends on factors such as the number of different objectives and the fitness
levels for each of these objectives.

For the sorting problem, four out of five of the considered sortedness measures yield
a linear number of trade-offs, hence population individuals, between fitness value and
complexity. Only one of the fitness functions, namely INV, can potentially generate a
quadratic number of trade-offs. However, our experiments show that even in the case
of INV the maximum population size is mostly about n and always linear in n (see
Figure 3.5 where the population size has been divided by log n and n). As for the
maximum tree size, there is no evident correlation between the choice of a particular
initialization scheme and the maximum population size.
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Figure 3.6: Shown as box plots is the number of evaluations required until the first individual
with optimal fitness is found. Note that this multi-objective approach is ”more reliable”
(albeit slower) in solving the problem than the (1+1)-GP setups of Figures 3.3 and 3.4.

Average case optimisation time

Just as in the previous section, Figure 3.6 shows the distribution of the expected opti-
misation time for SMO-GP. Observe that for multi-objective algorithms the expected
optimisation time is the number of evaluations to reach the true Pareto front, however,
since for our experiments these two measure almost always coincided, we decided to
drop the latter and promote the comparison between (1+1)-GP variants and SMO-GP
variants. Table 3.7 summarises the meaning of the various line styles employed in the
plot.

As can be seen from the plots, the theoretical bounds on HAM, EXC and RUN
are always verified, this suggesting they are tight. As for INV and LAS, the polyno-
mial lines show a strong indication towards a runtime in Ω(n3 log n), mostly close to
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O(n3 log n). Overall, when n is large, the single operation mode seems to yield better
factors for the polynomials and a lower failure rate with respect to multi-operation
mode.

3.5 Conclusions

Evolutionary algorithms with variable-length representations are frequently used, and
the most prominent example using such a representation is genetic programming.
Through our investigations, we contribute to their theoretical understanding. We dis-
cussed two methods for dealing with bloat that frequently occur when using such a
representation. In order to point out the differences between these two approaches,
we examined different measures of sortedness that have been analysed for evolution-
ary algorithms with fixed length representations. Interestingly, our analysis for the
parsimony approach shows that variable-length representations might have difficulties
when dealing with simple measures of sortedness due to the presence of local optima.
Contrary to this, our runtime analysis for simple multi-objective algorithms shows that
they compute the whole Pareto front for all examined sortedness measures in expected
polynomial time.

Additionally, we carried out experimental investigations to complement the theoret-
ical results. Crucial parameters in these theoretical analyses are the maximal solution
size that is attained during the run of the algorithms, as well as the population size
when dealing with multi-objective models. Furthermore, just a few theoretical results
for the multi-operation variants are known to date, and for the existing bounds, it is
also unknown how tight the given bounds are.

The analysis of our empirical investigations allowed us to fill in the gaps in the
theory with conjectures about the average case complexities of these algorithms (see
Tables 3.8 and 3.9):

• (1+1)-GP, F(X):When no bloat-control is applied, the algorithm fails regularly
to solve RUN. INV and LAS appear to be solvable in O(n2 log n), while EXC and
HAM are solvable in O(n4).

• (1+1)-GP*, F(X): This situation changes quite dramatically for the worse,
when introducing the minimal bloat-control mechanism of accepting new solu-
tions only if they are of better fitness. INV is solved in O(n4) (as theory pre-
dicted), assuming a maximum tree size Tmax = O(n) (see Table 3.4). All other
sortnedness measures are unsuccessful, when the initial tree already has n leaves.
When initialising with the empty tree, the single-mutation variant achieves a run-
time of O(n2 log n) on LAS, EXC and RUN, and a runtime of O(n3) on HAM.
These runtimes are in fact easy to prove, as the permutations can be build up
one element at a time.
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F(X)
(1+1)-GP*, F(X) (1+1)-GP, F(X)

single multi single multi

INV O(n3Tmax) O(n3Tmax) O(n log nTmax) † O(n log nTmax) †

LAS ∞ Ω
((

n
e

)n)
O(n log nTmax) † O(n log nTmax) †

HAM ∞ Ω
((

n
e

)n)
O(n3Tmax) † O(n3Tmax) †

EXC ∞ Ω
((

n
e

)n)
O(n3Tmax) † O(n3Tmax) †

RUN ∞ Ω
((

n
e

)n)
Ω
((

n
e

)n) † Ω
((

n
e

)n) †
Table 3.8: Single-objective problems: summary of our average case conjectures (†) and the
proven bounds from Table 3.2.

• (1+1)-GP, MO-F(X): Here, the combination of applying just a single mutation
at a time and initializing with the empty tree is the most successful one. When
intialised with trees with C(X) = 2n− 1, then the algorithm has some chance to
get stuck in a local optimum on MO-HAM, but still achieves an upper bound of
O(n3) in the average case. As proven: MO-LAS is solved in O(n2 log n), which
confirms the proven upper bound.

• SMO-GP, MO-F(X): All problems are solved in O(n3 log n), except for MO-
HAM which is solved on average in O(n4), thus confirming the proofs. Regarding
the missing proofs, it is now easy to show the O(n3 log n) for MO-INV, assuming
that the maximum population size Pmax = O(n), as supported by Figure 3.5.

Note that our results are based on an initial tree size, i.e. Tinit, which is always linear
in n, and thus the Tinit term suggested by theoretical results is always dominated by
the O(n log n) term. Nevertheless, it is easy to show that by using arbitrarily large
initial tree sizes it is possible to obtain expected optimisation times in which the Tinit

term is relevant.
This work has been published in the book chapter of the post-conference book Ge-

netic Programming Theory and Praxis IX in 2011 [65], and in the proceedings of the
12th International Conference on Parallel Problem Solving From Nature (PPSN) in
2012 [87].
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3.5. CONCLUSIONS 49

F(X)
(1+1)-GP, MO-F(X) SMO-GP, MO-F(X)

single multi single/multi

INV O(Tinit + n5), O(nTinit + n3) † O(nTinit + n3) † O
(
n2Tinit + n5

)
, O(nTinit + n3 log n) †

LAS O(Tinit + n2 log n) O(Tinit + n2 log n) O(nTinit + n3 log n) †

HAM ∞, O(n3) † O(n3) † O(nTinit + n4)

EXC ∞ O(nTinit + n5) ‡ O(nTinit + n3 log n)

RUN ∞ Ω
((

n
e

)n) † O(nTinit + n3 log n)

Table 3.9: Multi-objective problems: summary of our average case conjectures (†) and the
proven bounds from Table 3.3. ‡ is a conjecture based on the idea that a single exchange
operation can be simulated with HVL-Prime in time O(n4).
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Experience without theory is blind, but theory
without experience is mere intellectual play.

Immanuel Kant

4
Experimental Analysis of ORDER and

MAJORITY

In contrast to the previous chapter, where the focus was on theoretical in-
vestigations, we now carry out experimental investigations that complement recent
theoretical investigations [29, 62]. Crucial measures in these theoretical analyses are
the maximum tree size that is attained during the run of the algorithms as well as
the population size when dealing with multi-objective models. Both measures can be
very difficult to bound in a theoretical analysis. Therefore, we study those measures in
detail by extensive experimental investigations and analyse the runtime of the different
algorithms in a purely experimental way.

4.1 Introduction

The algorithms that we consider in the following are the stochastic hill-climber called
(1+1)-GP (see Figure 2.6) and the population-based multi-objective programming al-
gorithm called SMO-GP (see Figure 2.7). These algorithms have been analysed on
problems with isolated program semantics taken from [39], which can be seen as the
analogue of linear pseudo-Boolean functions [27] known from the computational com-
plexity analysis of evolutionary algorithms working with fixed length binary represen-
tations.
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The theoretical results provided in [29, 62] bring up several questions that remain
unanswered in these papers. In particular, for different combinations of algorithms
and problems no (or no exact) runtime bounds are given. In our paper, we explore
the different open cases and questions in an experimental way. Similar to [8, 53], this
may guide further rigorous analyses by exploring the important measures within a
computational complexity analysis of the algorithms and give experimental estimates
on the actual runtime of the algorithms on the different problems. Our experimental
investigations, will concentrate on important measures such as the maximum tree size
during the run of the single-objective algorithms analysed in [29] and the maximum
population size of the multi-objective algorithm analysed in [62]. It can be observed
from the analyses carried out in these two papers, that both measures have a different
implication on the runtime of the analysed genetic programming algorithms. Other
experimental results indicate that both measures do not grow large during the run
of the algorithms, which would imply a fast optimisation process. Furthermore, our
experimental results on the actual runtime of (1+1)-GP and SMO-GP indicate an
efficient optimisation process.

This chapter is structured as follows. In Section 4.2, we summarise the computa-
tional complexity results from [29, 62]. (1+1)-GP is experimentally investigated in
Section 4.3 and the behaviour of SMO-GP is examined in Section 4.4. We finish with
some concluding remarks.

4.2 Preliminaries

In our experimental investigations, we will treat the algorithms and problems analysed
in [29, 62]. The setup is similar to that of our investigations on SORTING (see Chap-
ter 3). For the (1+1)-GP, we consider the problem of computing a solution X that
maximises a given function F (X). In the case of the parsimony approach, we addi-
tionally take into account the complexity C(X) of a solution (measured as the total
number of nodes in the tree). For SMO-GP, we will treat the two objectives F and
C as equally important and use standard notations from the field of multi-objective
optimisation (see Section 2.3). As before, (1+1)-GP and SMO-GP only use the mu-
tation operator HVL-Prime (see Figure 2.4) to generate offspring. Lastly, depending
on the number of operations used in the mutation operator, we get the algorithms
(1+1)-GP-single and SMO-GP-single and their corresponding multi-mutation variants
(1+1)-GP-multi and SMO-GP-multi.

4.2.1 Theoretical results

Let us recall that the computational complexity analysis of genetic programming anal-
yses the expected number of fitness evaluations until an algorithm has produced an
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F(X)
(1+1)-GP, F(X) [29] (1+1)-GP, MO-F(X) [62] SMO-GP, MO-F(X) [62]
k=1 k=1+Pois(1) k=1 k=1+Pois(1) k=1 k=1+Pois(1)

ORDER O(nTmax) O(nTmax) O(Tinit + n logn)

?

O(nTinit + n2 logn)

WORDER ? ? O(Tinit + n logn) O(n3)⋆ ?
MAJORITY O(n2Tmax logn) ? O(Tinit + n logn) O(nTinit + n2 logn)

WMAJORITY ? ? O(Tinit + n logn) O(n3)⋆ ?

Table 4.1: Computational complexity results from [29, 62]. Question marks indicate com-
binations for which we do not know any bounds.

optimal solution for the first time. This is called the expected optimisation time. In the
case of multi-objective optimisation the number of fitness evaluations until the whole
Pareto front has been computed is analysed and referred to as the expected optimisa-
tion time. The bounds from [29, 62] are listed in Table 4.1. As it can be seen, all results
take into account tree sizes of some kind: either the maximum tree size Tmax during the
search plays a role in the bound, or the size of the initial tree Tinit does. Furthermore,
it is quite striking that virtually no results for the multi-operation variants are known
to date. It is also unknown how tight the given bounds are. The maximum tree size for
(1+1)-GP and the population size for SMO-GP play a relevant role in the theoretical
analysis and will be further investigated in the rest of the paper. Lastly, note that
the upper bounds marked with ⋆ hold only if the algorithm has been initialised in the
particular, i.e. non-redundant, way described in [62].

4.2.2 Experimental setup

In the remainder of this chapter, we will empirically confirm and verify the theoretical
results from [29, 62]. Additionally, by analysing the data gathered from the experi-
ments, we will estimate asymptotic runtimes where theoretical results are missing. We
consider (1+1)-GP and SMO-GP, each in their single and multi-operation variants, and
investigate problems of sizes n = 20, 40, 60, . . . , 200. For the initialisation, we consider
the schemes init0 (empty tree) and init2n (in which a 2n leaves tree is generated by
applying 2n insertion mutations at random positions). In total, our experiments span
twelve problems: WORDER and WMAJORITY (see Section 2.2 in their F(X) and
MO-F(X) variants. The weight settings are set as follows:

• ORDER, MAJORITY: wi = 1, 1 ≤ i ≤ n

• WORDER-RAN, WMAJORITY-RAN: wi ∈ [0, 1] chosen uniformly at random,
1 ≤ i ≤ n

• WORDER-BIN, WMAJORITY-BIN: wi = 2n−i, 1 ≤ i ≤ n

The following experiments were performed on AMD Opteron 250 CPUs (2.4GHz), on
Debian GNU/Linux 5.0.8, with Java SE RE 1.6 and were given a maximum runtime of 3
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k F(X) n
(1+1)-GP, F(X) (1+1)-GP, MO-F(X)

init0 init2n init0 init2n
m iqr m iqr m iqr m iqr

k=
1

ORDER 100 519 94.5 593 100 199 0 399 2
WORDER-RAN 100 513 85 594 90 199 0 399 0.5
WORDER-BIN 100 513 94 591 88.5 199 0 399 0
MAJORITY 100 507 78.5 563 72 199 0 399 0

WMAJORITY-RAN 100 499 76.5 567 74.5 199 0 399 0
WMAJORITY-BIN 100 499 74.5 567 75 199 0 399 0

k=
1+

Po
is(

1)

ORDER 100 670 138 742 143 223 12 399 6
WORDER-RAN 100 667 136.5 713 131 229 12 399 6
WORDER-BIN 100 665 150.5 735 132.5 231 12 399 4
MAJORITY 100 624 96 668 102 239 14 401 8

WMAJORITY-RAN 100 617 104 678 116.5 241 16 401 8
WMAJORITY-BIN 100 635 114.5 671 116.5 243 14 401 8

Table 4.2: Maximum tree sizes encountered until the individual Xmax with maximum fitness
is found. Shown are median m and median interquartile ranges iqr. Here k = 1 and k =
1 + Pois(1) refer respectively to the single and multi-operation variants.

hours and a budget of 109 evaluations. Furthermore, each experiment has been repeated
400 times, which results in a standard error of the mean (the standard deviation of the
sampling distribution) of 1/

√
400 = 5%. The source code of the framework is available

online (see the URLs in Section 3.4.2).

4.3 (1+1)-GP

4.3.1 Tree size

The theoretical bounds for (1+1)-GP on ORDER and MAJORITY presented in [29]
depend on the maximum tree size that is encountered during the run of the algo-
rithms. We investigate the maximum tree size experimentally in order to see whether
bloat occurs when applying the algorithms. For (1+1)-GP-single using the parsimony
approach, i. e. using the function MO-F(X), the difference between the solution value
S and the number of leaves not preceded by their complements can not increase during
the run of the algorithm [62].

First, we investigate the tree sizes typically observed during the optimisation for
the different (1+1)-GP algorithms. Table 4.2 reports results for n = 100, but similar
results hold for the other input sizes. The maximum tree size observed during the
run of (1+1)-GP on MO-F(X) when using single-operation and empty initialisation is
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2n−1 , which is the minimum possible size of an optimal solution. This was expected,
since the algorithm can only increase the tree by a single leaf in every accepting step.
These values increase by about 10-20% in the case of init0, when multiple HVL-Prime
applications are allowed per mutation step. When the acceptance criteria is weakened
by switching to the F(X) variant (i.e. the current tree can be replaced by larger ones of
identical fitness), then the tree sizes are about 2.5 times larger in the single-operation
case, and about 3 times larger in the multi-operation case.

Similarly, when running (1+1)-GP on MO-F(X), if the population is initialised with
trees of 2n leaves, the largest trees encountered are of size 2 · (2n) − 1, i.e. the tree
size of the initial solution, in the single-operation case, and are just minimally larger
(about 1%) in the multi-operation case.

For the non-parsimony variants, however, the largest trees are about 50% larger
when solving ORDER, and almost 100% when solving MAJORITY.

4.3.2 Runtime

Figure 4.1 shows the distributions of the required evaluations for the (1+1)-GP variants
as box plots. The line plots represent the medians divided by different polynomials
and suggest the asymptotic behavior of the algorithms: the solid line is the median
number of evaluations needed to produce the individual with the optimal fitness value
divided by n log n, and the dashed line is the same number, but divided by n2.

For all combinations of algorithms and problems these plots indicate an expected
optimisation time of O(n log n), as the solid lines closely resemble constant functions
(see the y-values for n = 20 and n = 200), and the y-values of the dashed lines
are decreasing with increasing values of n. The constant factor obtained by dividing
the median number of evaluations by n log n is overall higher in the single-operation
variants of the algorithm, suggesting that applying multi mutations can help getting
earlier to the optimal solution.

One important observation is that the algorithms’ asymptotic behaviour appears to
be same, when initialised with the empty tree, and with trees with 2n leaves. For the
setups where a theoretical bound in Table 4.1 is missing, the experimental results give
a strong indication about the expected optimisation time being O(n log n).

4.4 SMO-GP

4.4.1 Tree size and population size

Table 4.3 shows the maximum tree sizes and maximum population sizes that were ob-
served up to the following two events. Firstly, until the individual Xmax with maximum
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Figure 4.1: Number of evaluations required by (1+1)-GP until the individual Xmax with
maximum fitness is found, shown as box plots. The solid line is the median of the number of
evaluations divided by n log n, the dashed line is the same median divided by n2.



F(X) n
maximum tree size max. population size

to Xmax to PPareto to Xmax to PPareto

m iqr m iqr m iqr m iqr
SM

O
-G

P,
w
ith

k=
1 in

it 0
ORDER 100 199 0 199 0 101 0 101 0

WORDER-RAN 100 199 0 199 0 101 0 101 0
WORDER-BIN 100 199 0 199 0 101 0 101 0
MAJORITY 100 199 0 199 0 101 0 101 0

WMAJORITY-RAN 100 199 0 199 0 101 0 101 0
WMAJORITY-BIN 100 199 0 199 0 101 0 101 0

in
it 2

n

ORDER 100 399 0 399 0 101 0 101 0
WORDER-RAN 100 399 0 399 0 101 0 101 0
WORDER-BIN 100 399 0 399 0 101 0 101 0
MAJORITY 100 399 0 399 0 101 0 101 0

WMAJORITY-RAN 100 399 0 399 0 101 0 101 0
WMAJORITY-BIN 100 399 0 399 0 101 0 101 0

SM
O
-G

P,
w
ith

k=
1+

Po
is(

1)

in
it 0

ORDER 100 207 6.5 207 6.5 101 0 101 0
WORDER-RAN 100 211 8 211 8 102 2 102 1
WORDER-BIN 100 211 6 211 6 102 1 102 2
MAJORITY 100 215 10.5 215 10.5 101 0 101 0

WMAJORITY-RAN 100 223 12 223 12 103 2 103 1
WMAJORITY-BIN 100 219 10 219 10 102 2 103 2

in
it 2

n

ORDER 100 399 4 399 4 101 0 101 0
WORDER-RAN 100 399 4 399 4 102 2 102 1
WORDER-BIN 100 399 4 399 4 102 1 102 2
MAJORITY 100 399 4 399 4 101 0 101 0

WMAJORITY-RAN 100 400 6 400 6 103 2 104 2
WMAJORITY-BIN 100 401 6 401 6 102 2 103 1

Table 4.3: Maximum tree sizes and maximum population sizes encountered for SMO-GP
on the MO-F(X) problem variants: (1) until the individual Xmax with maximum fitness is
found, (2) until the population represents the entire true Pareto front PPareto. Shown are
median m and interquartile ranges iqr. init0 denotes the initialisation with the empty tree,
and init2n the one with randomly constructed trees with 2n leaf nodes.

fitness is found, and secondly, until the population represents the entire true Pareto
front PPareto.

It can be seen that tree and population sizes observed by SMO-GP-single are in-
dependent of the initialisation. In all cases, no trees with more than the size of the
Pareto optimal solution X with F (X) = n (size 2n − 1) (when using init0) and the
initial tree size 2 · (2n) − 1 (when using init2n) ever belong to the population. In the
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multi-operation cases, the maximum population sizes are rarely higher, and the same
holds for the maximum tree sizes.

4.4.2 Runtime

Figure 4.2: Shown as box plots is the number of evaluations required: (1) until the individual
Xmax with maximum fitness is found (orange), (2) until the population represents the entire
true Pareto front PPareto (red). The solid line is the median of the latter number of evaluations
divided by n2 log n, the dashed line is it divided by n3.

Just as in the previous section, we show now the distributions of the required evalu-
ations as box plots in Figure 4.2. As before, yellow box plots represent the number of
evaluations to get to Xmax, while red box plots represent now the number of evaluations
to get to PPareto. In this plot, the lines are the medians divided by different polynomials
and suggest the asymptotic behaviour of the algorithms: the solid line is the median
number of evaluations needed to get to the Pareto front divided by n2 log n, and the
dashed line is the same number, but divided by n3. For all combinations of algorithms
and the problems, these plots indicate an expected optimisation time of O(n2 log n)

for ORDER and MAJORITY, as the solid lines closely resemble constant functions,
and the y-values of the dashed lines are decreasing with increasing values of n. For
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the weighted variants, however, the solid lines appear to be slowly rising, indicating a
runtime in Ω(n2 log n)∩O(n3), although the runtime is extremely close to O(n2 log n).

Furthermore, it can be observed that there is a significant time difference, for
SMO-GP-multi, between finding the individual with the optimal fitness value and
finding the entire Pareto front. For SMO-GP-single, this time difference is negligible,
which is the reason why the corresponding orange box plots are scarcely identifiable
behind the red ones.

4.5 Conclusions

In this chapter, we carried out experimental investigations to complement recent theo-
retical results on the runtime of two genetic programming algorithms [29, 62]. Crucial
measures in these theoretical analyses are the maximum tree size that is attained
during the run of the algorithms, as well as the population size when dealing with
multi-objective models. Furthermore, virtually no theoretical results for the multi-
operation variants are known to date. It is also unknown how tight the given bounds
are. The analysis of our empirical investigations allowed us to fill in the gaps in the
theory with conjectures about the expected optimisation time (see Tables 4.4 and 4.5)
of these algorithms.

Our experimental evaluation shows that the expected optimisation time of (1+1)-GP
on the single-objective F(X) is very close to O(n log n). Our results, however, are
based on an initial tree size, i.e. Tinit, which is always linear in n, and thus the
Tinit term suggested by theoretical results is always dominated by the O(n log n) term.
Nevertheless, it is easy to show that by using arbitrarily large initial tree sizes it is
possible to obtain expected optimisation times in which the Tinit term is relevant. For
this reason we conjecture an expected optimisation time of O(Tinit+n log n). Following
the same reasoning for SMO-GP, we conjecture a runtime of O (nTinit + n2 log n) by
noting that the observed runtimes are very close to O(n2 log n) and that the algorithm
has to evolve a population of size O(n).

As a further development for this line of research, it would be interesting to prove
these conjectured bounds theoretically and to show how they are related to maximum
population size reached during an optimisation run.

This work has been published in the proceedings of the 12th International Conference
on Parallel Problem Solving From Nature (PPSN) in 2012 [84].
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F(X)
(1+1)-GP, F(X) (1+1)-GP, MO-F(X)

k=1 k=1+Pois(1) k=1 k=1+Pois(1)

ORDER
O(nTmax) [29] O(nTmax) [29]

O(Tinit + n logn)[62] O(Tinit + n logn) †
O(Tinit + n logn) † O(Tinit + n logn) †

WORDER O(Tinit + n logn) † O(Tinit + n logn) † O(Tinit + n logn)[62] O(Tinit + n logn) †

MAJORITY
O(n2Tmax logn) [29]

O(Tinit + n logn) † O(Tinit + n logn)[62] O(Tinit + n logn) †
O(Tinit + n logn) †

WMAJORITY O(Tinit + n logn) † O(Tinit + n logn) † O(Tinit + n logn)[62] O(Tinit + n logn) †

Table 4.4: Summary of our conjectures (†) and the existing upper bounds from Table 4.1.

F(X)
SMO-GP, MO-F(X)

k=1 k=1+Pois(1)

ORDER O(nTinit + n2 log n)[62] O(nTinit + n2 log n)[62]

WORDER
O(n3)⋆ [62]

O(nTinit + n2 log n) †
O(nTinit + n2 logn) †

MAJORITY O(nTinit + n2 log n)[62] O(nTinit + n2 log n)[62]

WMAJORITY
O(n3)⋆ [62]

O(nTinit + n2 log n) †
O(nTinit + n2 logn) †

Table 4.5: Summary of our conjectures (†) and the existing upper bounds from Table 4.1.



Part II

Design of Evolutionary
Multi-Objective Algorithms
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The majority see the obstacles; the few see the
objectives; history records the successes of the lat-
ter, while oblivion is the reward of the former.

Alfred A. Montapert

5
Evolutionary Multi-Objective Optimisation

Multi-objective optimisation problems arise frequently in applications.
For example, let us consider the scenario of producing energy with the help of wind
turbines. There, in the planning phase of the wind farm, several properties have to be
considered. In Figure 5.1 we indicate the trade-offs between the occurring wake effects
(which are detrimental to the energy production) and the area dimensions (which incur
varying initial set-up costs): smaller areas cost less initially, but the wake effects on
the other hand can significantly reduce the efficiency of the wind farm. In order to
eventually make an informed decision for a particular wind farm configuration, the
decision maker should be aware of different possible trade-offs. For more real-world
examples, we refer the interested reader to the surveys [15, 57, 59, 83].

As we see in the example of the wind farm planning, the objectives of real-world
problems can often be in conflict with each other. The goal of solving a multi-objective
optimisation (MOO) problem is to find a (not too large) set of compromise solutions.
The Pareto front of a MOO problem consists of the function values representing the
different trade-offs with respect to the given objective functions. In practice, it is
impossible to compute the whole Pareto front, and MOO problems can often only
be solved approximately by heuristic approaches. Evolutionary algorithms have been
widely used to tackle multi-objective problems. These algorithms use different measures
to ensure diversity in the objective space but are not guided by a formal notion of
approximation.
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Figure 5.1: Sketch: search space for the multi-objective optimisation of wind farms with
respect to “wake effects vs. area requirements”. The red dots represent actual layouts with
different trade-offs.

In this part of the thesis, we present a new framework of an evolutionary algorithm
for multi-objective optimisation that allows to work with a formal notion of approxi-
mation. Our experimental results show that our approach outperforms state-of-the-art
evolutionary algorithms in terms of the quality of the approximation that is obtained
in particular for problems with many objectives.

5.1 Introduction

Multi-objective optimisation is assumed to be more (or at least as) difficult as single-
objective optimisation due to the task of computing several solutions. From a com-
putational complexity point of view even simple single-objective problems on weighted
graphs like shortest paths or minimum spanning trees become NP-hard when they en-
counter at least two weight functions [30]. In addition, the size of the Pareto front is
often exponential for discrete problems and even infinite for continuous ones.

Due to the hardness of almost all interesting multi-objective problems, different
heuristic approaches have been used to tackle them. Among these methods evolution-
ary algorithms are frequently used as they work at each time step with a set of solutions
called population. The population of an evolutionary algorithm for a MOO is used to
store desired trade-off solutions for the given problem.

As the size of the Pareto front is often very large, evolutionary algorithms and all
other algorithms for MOO have to restrict themselves to a smaller set of solutions. This
set of solutions should be a good approximation of the Pareto front. The main question
is now how to define approximation. The literature (see, e. g., [19]) on evolutionary
multi-objective optimisation (EMO) just states that the set of compromise solutions

• should be close to the true Pareto front,
• should cover the complete Pareto front, and
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• should be uniformly distributed.

Many approaches try to produce good approximations of the true Pareto front by
incorporating different preferences. For example, the environmental selection in the
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [20] first ranks the individuals
using non-dominated sorting. Then, in order to distinguish individuals with the same
rank, the crowding distance metric is used, which prefers individuals from less crowded
sections of the objective space. The metric value for each solution is computed by
adding the edge lengths of the cuboids in which the solutions reside, bounded by the
nearest neighbours.

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) [98] works similarly. The
raw fitness of the individuals according to Pareto dominance relations between them is
calculated, and then a density measure to break the ties is used. The individuals that
reside close together in the objective space are less likely to enter the archive of best
solutions.

In contrast to these two algorithms, the Indicator-Based Evolutionary Algorithm
(IBEA) [96] is a general framework, which uses no explicit diversity preserving mecha-
nism. The fitness of individuals is determined solely based on the value of a predefined
indicator. Typically, implementations of IBEA come with the epsilon indicator or the
hypervolume indicator, where the latter measures the volume of the dominated portion
of the objective space.

The S-metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA) [32]
is a frequently used IBEA, which uses the hypervolume indicator directly in the search
process. It is a steady-state algorithm that uses non-dominated sorting as a ranking cri-
terion, and the hypervolume as the selection criterion to discard that individual, which
contributes the least hypervolume to the worst-ranked front. While SMS-EMOA often
outperforms its competition, its runtime unfortunately increases exponentially with
the number of objectives. Nevertheless, with the use of fast approximation algorithms
(e.g., [5, 10, 48]), this algorithm can be applied to solve problems with many objectives
as well.

However, the above notion of approximation is not a formal definition. Having no
formal definition of approximation makes it hard to evaluate and compare algorithms
for MOO problems. Therefore, we think that it is necessary to use a formal definition of
approximation in this context and evaluate algorithms with respect to this definition.

Different formal notions of approximation have been used to evaluate the quality
of algorithms for multi-objective problems from a theoretical point of view. The most
common ones are the multiplicative and additive approximation (see [18, 22, 72]). Lau-
manns et al. [54] have incorporated this notion of approximation in an evolutionary
algorithm for MOO. However, this algorithm is mainly of theoretical interest as the de-
sired approximation is determined by a parameter of the algorithm and is not improved
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over time. Another approach related to a formal notion of approximation is the popular
hypervolume indicator [97] that measures the volume of the dominated portion of the
objective space. Hypervolume-based algorithms such as the Multi-Objective Covari-
ance Matrix Adaptation Evolution Strategy (MO-CMA-ES) [47] or SMS-EMOA [7] are
well-established for solving MOO problems. They do not use a formal notion of approx-
imation but it has recently been shown that the worst-case approximation obtained by
optimal hypervolume distributions is asymptotically equivalent to the best worst-case
approximation achievable by all sets of the same size [11, 12]. The major drawback
of the hypervolume approach is that it cannot be computed in time polynomial in the
number of objectives unless P = NP [9].

In this part of the thesis, we introduce an efficient framework of an evolutionary
algorithm for MOO that works with a formal notion of approximation and improves the
approximation quality during its iterative process. The algorithm can be applied to a
wide range of notions of approximation that are formally defined. As the algorithm does
not have complete knowledge about the true Pareto front, it uses the best knowledge
obtained so far during the optimisation process.

The intuition for our framework is as follows. During the optimisation process, the
current best set of compromise solutions (usually called “population”) gets closer and
closer to the Pareto front. Similarly, the set of all non-dominated points seen so far
in the objective space (we call this “archive”) is getting closer to the Pareto front.
Additionally, the archive is getting larger and larger and becoming an increasingly
good approximation of the true Pareto front. Assuming that the archive approximates
the Pareto front, we then measure the quality of the population by its approximation
with respect to the archive. In our algorithm

• any set of feasible solutions constitutes a (potentially bad) approximation of the
true Pareto front, and

• we optimise the approximation with respect to all solutions seen so far.

We show that this approach is highly successful in obtaining approximations accord-
ing to the formal definition. Comparing our results to state of the art approaches such
as NSGA-II, SPEA2, and hypervolume based algorithms, we show that our algorithm
gives significantly better approximations fulfilling the formal definition.

The outline of this part is as follows. We introduce some basic definitions in Sec-
tion 5.2. In Chapter 6 we present the basic algorithm and first speed-up techniques.
In Chapter 7 we present the improved version of the algorithm, which incorporates
additional speed-up techniques.
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5.2 Preliminaries

In multi-objective optimisation the task is to optimise a function f = (f1, . . . , fd) : S →
Rd

+ with d ≥ 2, which assigns to each element s ∈ S a d-dimensional objective vector.
Each objective function fi : S 7→ R, 1 ≤ i ≤ d, maps from the considered search space
S into the positive real values. Elements from S are called search points and the
corresponding elements f(s) with s ∈ S are called objective vectors.

Throughout this part of the thesis, we consider the minimisation of d objectives. As
already said, the given objective functions fi are usually conflicting in multi-objective
optimisation, which implies that there no single optimal objective vector. Instead of
this the Pareto dominance relation is defined, which is a partial order. In order to
simplify the presentation we only work with the Pareto dominance relation on the
objective space and mention that this relation transfers to the corresponding elements
of S.

The Pareto dominance relation ⪯ between two objective vectors x = (x1, . . . , xd)

and y = (y1, . . . , yd), with x, y ∈ Rd is defined as

x ⪯ y :⇔ xi ≤ yi for all 1 ≤ i ≤ d.

We say that x dominates y iff x ⪯ y. If

x ≺ y :⇔ x ⪯ y and x ̸= y

holds, we say that x strictly dominates y as x is not worse than y with respect to
any objective, and at least better with respect to one of the d objectives.

The objective vectors x and y are called incomparable if

x ∥ y :⇔ ¬(x ⪯ y ∨ y ⪯ x)

holds. Two objective vectors are therefore incomparable if there are at least two (out of
the d) objectives where they mutually beat each other. An objective vector x is called
Pareto optimal if there is no y = f(s) with s ∈ S for which y ≺ x holds. The set of all
Pareto optimal objective vectors is called the Pareto front of the problem given by f .
Note that the Pareto front is a set of incomparable objective vectors.

Even for two objectives the Pareto front might grow exponentially with respect to
the problem size. Therefore, algorithms for multi-objective optimisation usually have
to restrict themselves to a smaller set of solutions. This smaller set is then the output
of the algorithm.
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Algorithm 5.1: Measure approximation quality of a population
input : Archive A, Population P

output: Indicator Sα(A,P )

1 S ← ∅;
2 foreach a ∈ A do
3 δ ←∞;
4 foreach p ∈ P do
5 ρ← −∞;
6 for i← 1 to d do
7 ρ← max{ρ, ai − pi};

8 δ ← min{δ, ρ};

9 S ← S ∪ {δ};

10 sort S decreasingly;
11 return S;

We make the notion of approximation precise by considering a weaker relation on
the objective vectors called additive ϵ-dominance. It is defined as

x ⪯ϵ+ y :⇔ xi + ϵ ≤ yi for all 1 ≤ i ≤ d.

Furthermore, we also define additive approximation of a set of objective vectors T with
respect to another set of objective vectors S.

In order to judge the quality of a population P with respect to a given archive A,
we will use Definition 3. In this way, we have a measure on how good the current
population is with respect to the search points seen during the run of the algorithm.

Definition 3. For finite sets S, T ⊂ Rd, the additive approximation of T with respect
to S is defined as

α(S, T ) := max
s∈S

min
t∈T

max
1≤i≤d

(si − ti).

Although, we are only using the notion of additive approximation, we would like to
mention that our approaches can be easily adapted to multiplicative approximation
(e.g., as defined in [72]). To do this, we only need to adjust the definitions accordingly.

Note that this indicator is sensitive to outliers. We prefer this over taking the
average of the approximations: the resulting indicator would become very similar to
the generational distance [85], and it would lose its motivation from theory.

Our aim is to minimise the additive approximation of the population P we output
with respect to the archive A of all points seen so far, i.e., we want to minimise
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α(A,P ). The problem is that α(A,P ) is not sensitive to local changes of P . α(A,P )

only measures improvements of points that are currently worst approximated.
To get a sensitive indicator that can be used to guide the search, we consider instead

the set {α({a}, P ) | a ∈ A} of all approximations of the points in A. We sort this set
decreasingly and call the resulting sequence

Sα(A,P ) := (α1, . . . , α|A|).

The first entry α1 is again α(A,P ). Our new goal it then to minimise Sα(A,P ) lexico-
graphically.1 Note that this is an augmentation of the order induced by α(A,P ): If we
have α(A,P1) < α(A,P2) then we also have Sα(A,P1) <lex Sα(A,P2). Moreover, this
indicator is locally sensitive. Algorithm 5.1 describes how to calculate it.

1In lexicographic minimisation, the reduction of larger approximation values (placed towards the
left in the sorted sequence) is regarded as “infinitely more important” than the reduction of smaller
approximation values (placed towards the right in the sorted sequence).
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An approximate answer to the right problem is
worth a good deal more than an exact answer to
an approximate problem.

John Tukey

6
Approximation-Guided Evolution

So far, we have defined different concepts around multi-objective op-
timisation, but we have not presented our algorithm yet. In this chapter, we will
present the first algorithm called Approximation-Guided Evolution (AGE), which uses
the approximation quality indicator Sα(A,P ) (see Definition 3 and Algorithm 5.1).

6.1 Simple Algorithm

Given the definition of Sα(A,P ), it is easy to come up with an algorithm that minimises
it lexicographically. Algorithm 6.1 presents such an algorithm. It maintains a popula-
tion of µ individuals. In each generation, it generates λ new offspring. From the union
of the old population and the offspring generation it iteratively removes the individual
p for which Sα(A,P \ {p}) is lexicographically smallest. This approach is greedy and
does not guarantee to achieve the best possible approximation among all the

(
µ+ λ
µ

)
possible sets. Lastly, every new individual is added to the archive A such that the
archive only contains non-dominating solutions. As described in Algorithm 6.2, this
means that (i) a new offspring is only added if it is not dominated by another individ-
ual already in A and (ii) individuals in A that are dominated by a new individual are
removed. Note that in contrast to many other algorithms (like Laumanns et al. [54] or
all hypervolume-based algorithms), our new algorithms needs no meta-parameters.
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Algorithm 6.1: Simple (µ+ λ)-Approximation-Guided EA
1 Initialise population P with µ random individuals;
2 Set archive A← P ;
3 foreach generation do
4 Initialise offspring population O ← ∅;
5 for j ← 1 to λ do
6 Select two random individuals from P ;
7 Apply crossover and mutation;
8 Add new individual to O;

9 foreach p ∈ O do
10 Insert offspring p in archive A with Algorithm 6.2;

11 Add offsprings to population, i.e., P ← P ∪O;
12 while |P | > µ do
13 foreach p ∈ P do
14 Compute Sα(A,P \ {p}) with Algorithm 5.1;

15 Remove p from P for which Sα(A,P \ {p}) is lexicographically smallest;

Algorithm 6.2: Insert point into archive
input : Archive A, Point p ∈ Rd

output: Archive consisting of the Pareto optimal points of A ∪ {p}

1 dominated← false;
2 foreach a ∈ A do
3 if p ≺ a then delete a from A;
4 if a ⪯ p then dominated← true;

5 if not dominated then add p to A;
6 return A;

We now give an upper bound for the runtime of Algorithm 6.2. One generation
consists of producing and processing λ offspring. The main part of the runtime is
needed for the O(λ(µ+ λ)) computations of Sα(A,P \ {p}), each costing O(d |A| (µ+

λ) + |A| log |A|). Hence, we get a runtime of O(λ(µ + λ) |A| (d (µ + λ) + log |A|)) for
generating an offspring of λ points. This means for N function evaluations, that is, N
generated points overall, we get a total runtime of

O(N (µ+ λ) |A| (d (µ+ λ) + log |A|))

This algorithm works well for small population and offspring sizes µ + λ, but for e.g.
µ+ λ = 100, it becomes very slow due to the (µ+ λ)2 factor.
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Algorithm 6.3: Fast (µ+ λ)-Approximation-Guided EA
11–11 See lines 1–11 of Algorithm 6.1

12 foreach a ∈ A do
13 p1(a)← argminp∈P α({a}, {p});
14 p2(a)← argminp1(a) ̸=p∈P α({a}, {p});
15 α1(a)← minp∈P α({a}, {p});
16 α2(a)← minp1(a) ̸=p∈P α({a}, {p});

17 foreach p ∈ P do
18 β(p)← maxa∈A{α2(a) | p1(a) = p};

19 while |P | > µ do
20 Remove p∗ from P with β(p) minimal;
21 foreach a ∈ A with p1(a) = p∗ do
22 Compute p1(a), p2(a), α1(a), α2(a) as done above in lines 13–16;
23 β(p1(a))← max{β(p1(a)), α2(a)};

6.2 Fast Algorithm

We now show how to speed-up our approach. Let us first assume that the approxima-
tions α({a}, {p}) are distinct for all a ∈ A and p ∈ P . For all a ∈ A we denote the
point p ∈ P that approximates it best by p1(a) and the second best by p2(a). The
respective approximations we denote by αi(a) := α({a}, {pi(a)}) for i ∈ {1, 2}. Now,
let p ̸= q ∈ P and consider Sp := Sα(A,P \ {p}) and Sq := Sα(A,P \ {q}). Significant
for the comparison of the two are only the positions a ∈ A where Sp or Sq differ from
S := Sα(A,P ). This is the case for all positions in B := {a ∈ A | p1(a) ∈ {p, q}}. If we
delete p from P , then the worst approximation of one of the a ∈ B is the maximum of
max{α2(a) | p1(a) = p} and max{α1(a) | p1(a) = q}. Now observe that if

β(p) := maxa∈A{α2(a) | p1(a) = p}

is smaller than the respective β(q), then also the larger term above is smaller, as
max{α1(a) | p1(a) = q} < max{α2(a) | p1(a) = q}. Hence, we end up with the fact
that we only have to compare β(p) and throw out the point p with β(p) minimal (see
Algorithm 6.3).

Recall that we assumed that all approximations α({a}, {p}) with a ∈ A, p ∈ P are
distinct. If this does not hold, we can simply change the indicator Sα(A,P ) slightly
and insert symmetry breaking terms a ·ε, where ε > 0 is an infinitesimal small number.
This means that we treat equal approximations as not being equal and hence in some
arbitrary order.
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We now give an upper bound for the runtime of Algorithm 6.3. For one generation,
i.e., for producing and processing λ offspring, the algorithm needs a runtime of O(d (µ+
λ) |A|) for computing the values p1(a), p2(a), α1(a), α2(a) and β(p) initially. Then we
repeat λ times: We delete the point p∗ ∈ P with β(p) minimal in O(µ+λ), after which
we have to recompute the values p1(a), p2(a), α1(a), α2(a), but only for a ∈ A with
p1(a) = p∗. Observe that we can store a list of these a’s during the initial computation
and keep these lists up to date with no increase of the asymptotic runtime. Also note
that we would expect to find O(|A|/|P |) points with p1(a) = p∗, while in the worst
cases there may be up to O(|A|) such points. Summing up, we get a heuristic runtime
for one generation of O(d (µ + λ) |A| + λ((µ + λ) + d|P | · |A|/|P |)), which simplifies
to O(d(µ + λ)|A|) as |A| ≥ µ+ λ. In the worst case we replace O(|A|/|P |) by O(|A|)
and get a runtime for one generation of O(dλ(µ + λ)|A|). For N fitness evaluations
we, therefore, get a runtime of O(d(1 + µ/λ)|A|N) heuristically, and O(d(µ+ λ)|A|N)

in the worst case. Note that |A| ≤ N . For any λ = O(µ), e.g. λ = 1 or λ = µ, this
can be simplified to O(dµ|A|N) in both cases, while for λ = Ω(µ), e.g. λ = µ, we get
a reduced heuristic runtime of O(d|A|N).

6.3 Experimental Study

The fast (µ + λ)-version of our algorithm was implemented in the jMetal frame-
work [28].1 We compared the performance of our AGE algorithm to the established
MOO algorithms IBEA [96], NSGA-II [20], SMS-EMOA [32], and SPEA2 [98] on the
DTLZ benchmark family [21]. We used the functions DTLZ 1-4, each with n = 30

function variables and between 2 to 20 objective values/dimensions.2 Figure 6.1 shows
the Pareto fronts of DTLZ 1 and DTLZ 2 for three objectives. The fronts of DTLZ 3
and DTLZ 4 are equivalent to DTLZ 2; they only differ in the mapping from the
search space to the objective space. We limit the calculations of the algorithms to
a maximum of 100,000 fitness evaluations and a maximum computation time of four
hours per run. Note that the time restriction had to be used as the runtime of some
algorithms increases exponentially with respect to the size of the objective space.

The further parameter setup of the algorithms is as follows. Parents are selected
through a binary tournament, in which we select the individual out of two randomly
drawn ones with the better approximation of the archive. As variation operators, the
polynomial mutation and the simulated binary crossover [1] are applied, which are both
used widely in MOO algorithms [20, 40, 98]. The distribution parameters associated
with the operators are ηm = 20.0 and ηc = 20.0. The crossover operator is biased
towards the creation of offspring that are close to the parents, and was applied with

1The code is available here http://cs.adelaide.edu.au/~ec/research/age.php.
2It is important to note that we use the terms ‘objective values’ and ‘dimensions’ interchangeably,

as our focus is solely on the dimensionality of the objective space.
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(a) DTLZ 1. (b) DTLZ 2.

Figure 6.1: Visualization of the Pareto fronts for d = 3.
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Figure 6.2: Comparison of the performance of our algorithm AGE (. ) with IBEA (. ),
NSGA-II (. ), SMS-EMOA (. ), and SPEA2 (. ) on the test functions DTLZ 1 and DTLZ 2 with
varying dimension d. The figures show the average of 100 repetitions each. Only non-zero
hypervolume values are shown. For reference, we also plot (. ) the maximum hypervolume
achievable for µ→∞.

pc = 0.9. The mutation operator has a specialised explorative effect for MOO problems,
and is applied with pm = 1/n, where n denotes the number of variables.

Figures 6.2 and 6.3 present our results for population size µ = 100 and λ = 100,
averaged over 100 independent runs. We performed the same experiments also for
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Figure 6.3: Comparison of the performance of our algorithm AGE (. ) with IBEA (. ),
NSGA-II (. ), SMS-EMOA (. ), and SPEA2 (. ) on the test functions DTLZ 3 and DTLZ 4 with
varying dimension d. The figures show the average of 100 repetitions each. Only non-zero
hypervolume values are shown. For reference, we also plot (. ) the maximum hypervolume
achievable for µ→∞.

µ ∈ {25, 50} and observed similar behaviors. We assess the algorithms using the
following measures:

• Approximation: We approximate the achieved additive approximation of the
known Pareto fronts by first drawing one million points of the front uniformly
at random and then computing the approximation which the final population
achieved for this set with Algorithm 5.1.

• The hypervolume [97] is a popular performance measure which measures the vol-
ume of the dominated portion of the objective space relative to a reference point r.
For DTLZ1 we choose r = 0.5d, otherwise r = 1d. We approximate the achieved
hypervolume with an FPRAS [9] which has a relative error of more than 2% with
probability less than 1/1000. The volumes shown for DTLZ 1 are normalised by
the factor 2d.

As it is very hard to determine the minimum approximation ratio achievable or the
maximum hypervolume achievable for all populations of a fixed size µ, we only plot the
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theoretical maximum hypervolume for µ→∞. For this, a simple geometric calculation
gives a maximum (rescaled) hypervolume of 1 − 1/d! for DTLZ1 and a maximum
hypervolume of 1− 2−d πd/2/(d/2)! for DTLZ 2 (with n! := Γ(n+ 1)).

For all test functions, our new algorithm AGE (. ) achieves the best approximation
among the competing algorithms for dimensions d > 5. We first discuss DTLZ 1 and
DTLZ 3 who are known to be hard to analyze as they contain a very large number of
local Pareto-optimal fronts [21]. For both functions, we achieve the best approxima-
tion among all tested algorithms for d > 3. Remarkably, all other algorithms (besides
IBEA (. )) are unable to find the front at all for these instances. This results in ex-
tremely large approximations and zero hypervolumes. The reason for IBEAs decreasing
behaviour for very large dimension (d ≥ 18) is that it was stopped after four hours
and it could not perform 100, 000 iterations. The same holds already for much smaller
dimensions in the case of SMS-EMOA (. ), which uses an exponential-time algorithm
to internally determine the hypervolume. It did not finish a single generation for d ≥ 8

and only performed around 5, 000 iterations within four hours for d = 5. This implies
that the higher-dimensional approximations plotted for SMS-EMOA (. ) actually show
the approximation of the random initial population. Interestingly, the approximations
achieved by NSGA-II (. ) and SPEA2 (. ) are even worse as they are tuned for low-
dimensional problems and move their population too far out to the boundaries for high
dimensions. Our algorithm (. ) and also NSGA-II (. ) and SPEA2 (. ) always finished
in less than four hours.

The plots of DTLZ 2 and DTLZ 4 reveal other properties. Here, an approximation
of the front seems generally much easier. For small dimensions (d = 2, 3, 4), all algo-
rithms find acceptable solutions. However, for larger dimensions again SMS-EMOA (. ),
NSGA-II (. ), and SPEA2 (. ) fail for the said reasons. In these cases, our algorithm (. )
still achieves the best approximation, but for 4 ≤ d ≤ 18 (DTLZ 2) and 6 ≤ d ≤ 18

(DTLZ 4), the solutions found by IBEA (. ) (which uses the hypervolume as an indi-
cator) have a larger hypervolume. The hypervolume of IBEA is only worse for d = 20

because it could only perform a few hundred iterations within the four hour time limit.

6.4 Conclusions

Evolutionary algorithms are frequently used to solve multi-objective optimisation prob-
lems. Often, it is very hard to formally define the optimisation that current state-of-
the-art approach work with. We have presented a new evolutionary multi-objective
algorithm that works with a formal notion of approximation. The framework of our
algorithm allows to work with various formal notions of approximations. Our experi-
mental results show that given a fixed time budget it outperforms current state-of-the-
art approaches in terms of the desired additive approximation as well as the covered
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hypervolume on standard benchmark functions. This holds, in particular, for problems
with many objectives, which most other algorithms have difficulties dealing with.

This work has been published in the proceedings of the 21nd International Joint
Conference on Artificial Intelligence (IJCAI) in 2011 [13].

78



Not with whom you are born, but with whom you
are bred.

Miguel de Cervantes Saavedra, Don Quixote

7
Approximation-Guided Evolution II

Approximation-Guided Evolution (AGE) outperforms state-of-the-art
multi-multi-objective algorithms in terms of approximation quality, as we have
seen in the previous chapter. In particular, this holds for problems with many objec-
tives, which most other algorithms have difficulties dealing with. Quite surprisingly,
it is the other way around when the problems have just very few objectives. As can be
seen in Figure 7.5 (that will serve us for our final evaluation), the original AGE (. )
is clearly outperformed by other algorithms in several cases when the problem has just
two to three objectives.

We identified the following two important and disadvantageous properties of AGE:

1. A new but incomparable point is added to the archive independent of how dif-
ferent it is (see Line 10, Algorithm 6.3). These unconditional insertions can lead
to huge archives that consequently slow down the algorithm. In Section 7.1.1, we
introduce a technique to approximate the set of incomparable solutions seen.

2. The parents for the mating process are selected uniformly at random (see Line 6,
Algorithm 6.3). Interestingly, this random selection does not seem to be detri-
mental to the algorithm’s performance on problems with many objectives. How-
ever, realising that the selection process might be improved motivated us to
investigate algorithm-specific selection processes (see Section 7.1.2).

Of course, it is not clear whether approximating the archive gives an approxima-
tion of the Pareto front. However, the intuition is that after some time the archive
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approximates the front quite well, so that an approximation of the archive directly
yields an approximation of the front. The experiments presented later-on show that
this intuition is right, as our algorithm indeed finds good approximations of the fronts.

We propose a fast and effective approximation-guided evolutionary algorithm called
AGE-II. It is fast and performs well for problems with many as well as few objectives.
It can be seen as a generalization of AGE, but it allows to trade-off archive size and
speed of convergence. To do so, we adapt the ϵ-dominance approach [54] in order
to approximate the different points seen so far during the run of the algorithm (for
similar approaches see, e.g., [77, 78]). Furthermore, we change the selection of parents
being used for reproduction such that the algorithm is able to achieve a better spread
along the Pareto front. Our experiments show that AGE-II performs very well for
multi-objective problems having few as well as many objectives. It scales well with the
number of objectives and enables practitioners to add objectives to their problems at
small additional computational cost.

The outline of this chapter is as follows. In Section 7.1 we introduce our new al-
gorithm. In Section 7.2 we showcase the computational speed-up. In Section 7.3 we
report on our experimental investigations. Finally, we finish with some conclusions.

7.1 AGE-II

In this section, we present the improvements to AGE that lead to AGE-II. We show
how we adapt the ϵ-dominance approach Laumanns et al. [54] in order to approximate
the different points seen so far during the run of the algorithm. Subsequently, we briefly
motivate our parent selection strategy.

7.1.1 Archive Approximation

The size of the archive can grow to sizes that slow down the original AGE tremendously.
Interestingly, we are thus facing a problem that is similar to the original problem of
multi-objective optimisation: a set of solutions is sought that nicely represents the true
set of compromise solutions. In order to achieve this, we reuse AGE’s own main idea of
maintaining a small set that approximates the true Pareto front. By approximating the
archive as well in a controlled manner, we can guarantee a maximum size of the archive,
and thus prevent the archive from slowing down the selection procedure. We achieve
this based on the idea of ϵ-dominance introduced in Laumanns et al. [54]. Instead of
using an archive At that stores at any point in time t the whole set of non-dominated
objective vectors, we are using an archive A(t)

ϵgrid that stores an additive ϵ-approximation
of the non-dominated objective vectors produced until time step t.

In order to maintain such an approximation during the run of the algorithm, a
grid on the objective space is used to pick a small set of representatives (based on
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Algorithm 7.1: Outline of Approximation-Guided EA II
1 Initialize population P with µ random individuals;
2 Set ϵgrid the resolution of the approximative archive Aϵgrid ;
3 foreach p ∈ P do
4 Insert offspring floor(p) in the approximative archive Aϵgrid such that only

non-dominated solutions remain;

5 foreach generation do
6 Initialize offspring population O ← ∅;
7 for j ← 1 to λ do
8 Select two individuals from P (see Section 7.1.2);
9 Apply crossover and mutation;

10 Add new individual to O;

11 foreach p ∈ O do
12 Insert offspring floor(p) in the approximative archive Aϵgrid such that only

non-dominated solutions remain;
13 Discard offspring p if it is dominated by any point increment(a), a ∈ A;

14 Add offsprings to population, i.e., P ← P ∪O;
15 while |P | > µ do
16 Remove p from P that is of least importance to the approximation (for

details on this step see [13]);

Algorithm 7.2: Function floor

input : d-dimensional objective vector x, archive parameter ϵgrid
output: Corresponding vector v on the ϵ-grid

1 for i = 1 to d do v[i]←
⌊

x[i]
ϵgrid

⌋
;

ϵ-dominance). We reuse the update-mechanism from [54], and thus can maintain the
ϵ-Pareto set A

(t)
ϵgrid of the set A(t) of all solutions seen so far. Due to [54], the size is

bounded by ∣∣∣A(t)
ϵgrid

∣∣∣ ≤ m−1∏
j=1

⌊
K

ϵgrid

⌋
where

K =
d

max
i=1

(
max
s∈S

fi(s)

)
is the maximum function value attainable among all objective functions.
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Algorithm 7.3: Function increment

input : d-dimensional vector x, archive parameter ϵgrid
output: Corresponding vector v that has each of its components increased by 1

1 for i = 1 to d do v[i]← o[i] + 1 ;

.. f1.

f2

.
ϵgrid

.
2 · ϵgrid

.
3 · ϵgrid

.
4 · ϵgrid
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ϵgrid
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Pareto front
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Figure 7.1: The newly generated points P , Q, and R are shown with their corresponding
additive ϵ-approximations Pϵ, Qϵ, and Rϵ. Both objectives f1 and f2 are to be minimised,
and the current approximative archive is represented by .. Only Pϵ will be added to the
approximative archive, replacing A. Both P and Q will be candidates for the selection process
to form the next population.

Our new algorithm called AGE-II is parametrised by the desired approximation
quality ϵgrid ≥ 0 of the archive with respect to the seen objective vectors. AGE-II is
shown in Algorithm 7.1, and it uses the helper functions given in Algorithms 7.2 and 7.3.
The latter is used to perform a relaxed dominance check on the offspring p in Line 13.
A strict dominance check here would require an offspring to be not dominated by any
point in the entire archive. However, as the archive approximates all the solutions seen
so far (via the flooring), it might be very unlikely, or even impossible, to find solutions
that pass the strict dominance test.

7.1.2 Higher Performance for Lower Dimensions

Quite interestingly, and despite AGE’s good performance on problems with many
objective, it is clearly outperformed by other algorithms in several cases, when the
problem has just two or three objectives. The key discovery is that the random
parent selection of AGE is free of any bias. For problems with many objectives, this
is not a problem, and can even be seen as its biggest advantage. For problems with
just a few objectives, however, it is well known that one can do better than random
selection, such as selection based on crowding distance, hypervolume contribution, etc.
Such strategies then select potential candidates based on their relative position in the
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current population. For AGE, the lack of this bias means that solutions can be picked
for parents that are not necessarily candidates with high potential. Consequently, it is
not surprising to see that the original AGE is outperformed by algorithms that do well
with their parent selection strategy, if their strategy is effective in the d-dimensional
objective space.

Based on previous experiments [86], we choose the following parent selection strategy
‘ for the final comparison against the established algorithms. Firstly, the population is
reduced: solutions in the front i have a probability of 1/i of staying in the population.
Secondly, a binary tournament on two randomly selected solutions from the reduced
pool is performed for the parent selection, where solutions of higher crowding distance
are preferred. The consequence of the reduction is that all solutions that form the first
front are kept in the population, so are the extreme points. Additionally, solutions
that are dominated multiple times are less likely to be selected as a potential parent.
The use of the crowding distance then helps with maintaining a diverse set of solutions
in low-dimensional objective space. Both steps taken together significantly increase
the selection pressure over the original random selection in AGE. At the same time,
they are quick to compute and their effects diminish when the number of objectives
increases.

7.2 Speed-up through approximative archives

AGE-II works at each time step t with an approximation A
(t)
ϵgrid of the set of non-

dominated points At seen until time step t. Note, that setting ϵgrid = 0 implies the
original AGE approach that stores every non-dominated objective vector. In this sec-
tion, we want to investigate the effect of working with different archives sizes (deter-
mined by the choice of ϵgrid) in AGE-II. Our goal is to understand the effect of the
choice of this parameter on the actual archive size used during the run of the algorithm
as well as on the approximation quality obtained by AGE-II.

Next, we outline the results of our experimental investigation of the influence of
approximative archives on the runtime and the solution qualities. Note, that the com-
putational complexity of the original AGE is linear in the number of objectives, and this
holds for AGE-II, too. The algorithm was implemented in the jMetal framework [28]
and is publicly available1.

The parameter setup of AGE-II is as follows. As variation operators, the polynomial
mutation and the simulated binary crossover [1] were applied, which are both used
widely in MOO algorithms [20, 40, 98]. The distribution parameters associated with
the operators were ηm = 20.0 and ηc = 20.0. The crossover operator is biased towards
the creation of offspring that are close to the parents, and was applied with pc = 0.9.

1http://cs.adelaide.edu.au/~ec/research/age.php
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The mutation operator has a specialized explorative effect for MOO problems, and was
applied with pm = 1/n, where n denotes the number of variables. Population size was
set to µ = 100 and λ = 100, and each setup was given a budget of 100,000 evaluations.
We assess the selection schemes and algorithms using the additive approximation mea-
sures ([13]): we approximate the achieved additive approximation of the known Pareto
fronts by first drawing one million points of the front uniformly at random and then
computing the additive approximation that the final population achieved for this set.

Figure 7.2 shows the results averaged over 100 independent runs. Note how different
the archive growth is for the different selected functions in the cases of ϵgrid = 0, where
every non-dominated point is stored. For DTLZ 1, d = 2 the archive stays very small,
with about 80 solutions in the end. Even in the case of DTLZ 3, d = 10 (a function
with a similar objective space to that of DTLZ 1) only about every tenth solution is
kept in the archive, which eventually contains about 9,000 solutions. For the similar
objective spaces of DTLZ 2, d = 3 and DTLZ 4, d = 20 this situation is significantly
different, and the rate of producing non-dominated points is significantly higher. In
the case of the latter, over 90% of all generated solutions are added to the archive,
if the insertion is just based on non-dominance. This situation changes only slightly,
when a relatively ”coarse” ϵgrid = 0.1 is used. For DTLZ 3, d = 10, the same value of
the grid results in an enormous reduction in archive size.

Consequently, the choice of ϵgrid has a significant impact on the runtime and even
on the solution quality. For DTLZ 1, d = 2 the quality of the final population can be
increased, whereas the use of an approximative archive has little impact on the archive
size in this case. Of the tested values for DTLZ 2, d = 3 the choice of ϵgrid = 0.01 offers
a speed-up by a factor of eight. Additional speed-ups can be achieved, but they come
at the cost of worse final approximations. For DTLZ 3, d = 10 a similar observation
can be made: if a minor reduction in quality is tolerable, then a speed-up by a factor
of four can be achieved. The situation is very different for the 20-dimensional DTLZ 4,
where a speed-up by a factor of over 250 can be achieved, while achieving even better
quality solutions as well.

7.3 Benchmark Results

In this section, we compare AGE-II to well known evolutionary multi-objective algo-
rithms including the original AGE on commonly used benchmark functions.

7.3.1 Experimental Setup

We use the jMetal framework [28] to compare our AGE-II with the original AGE,
and with the established algorithms IBEA [96], NSGA-II [20], SMS-EMOA [32], and
SPEA2 [98] on the benchmark families WFG [46], LZ [56], and DTLZ [21]. The test
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setup is identical to that of [13], and to the already outlined setup of Section 7.2. It
is important to note that we limit the calculations of the algorithms to a maximum
of 50,000/100,000/150,000 fitness evaluations for WFG/DTLZ/LZ and to a maximum
computation time of 4 hours per run, as the runtime of some algorithms increases
exponentially with respect to the size of the objective space.2 The further parameter
setup of the algorithms is as follows. Parents were selected through a binary tournament
(unless further specified). We will present our results for population size µ = 100 and
λ = 100, averaged over 100 independent runs.

We assess the algorithms by taking their final populations, and then using the afore-
described additive approximation measure and the hypervolume [97]. The latter is
a popular performance measure that measures the volume of the dominated portion
of the objective space relative to a reference point r. For the quality assessment on
the WFG and LZ functions, we computed the achieved additive approximations and
the hypervolumes with respect to the Pareto fronts given in the jMetal package. For
DTLZ 1 we choose r = 0.5d, otherwise r = 1d. We approximate the achieved hypervol-
ume with an FPRAS [9], which has a relative error of more than 2% with probability
less than 1/1000. The volumes shown for DTLZ 1 are normalized by the factor 2d.
As it is very hard to determine the minimum approximation ratio achievable or the
maximum hypervolume achievable for all populations of a fixed size µ, we only plot
the theoretical maximum hypervolume for µ→∞ as a reference.

Note that, by the design of the additive approximation indicator, the approximation
values indicate the distributions of the solution and their distances from the Pareto
front, as no point on the Pareto front is approximated worse than the indicator value.

7.3.2 Experiment results

The benchmarking results for the different algorithms are shown in Figures 7.3, 7.4,
and 7.5. In summary, AGE-II ranks among the best algorithms on the low-dimensional
WFG and LZ functions. This holds for both the additive approximation quality, as
well as for the achieved hypervolumes. Interestingly, NSGA-II (. ) that normally
performs rather well on such problems, is beaten in almost all cases. SPEA2 (. ) and
IBEA (. ) on average perform better. AGE (. ), SMS-EMOA (. ), and AGE-II
(ϵgrid = 0.1:. , ϵgrid = 0.01:. ) often perform very similarly.

Our investigations on the DTLZ family prove to be more differentiating. As these
can be scaled in the number of objectives, the advantages and disadvantages of the
algorithms’ underlying mechanisms become more apparent:

2Again, it is important to note that we use the terms ‘objective values’ and ‘dimensions’ inter-
changeably, as our focus is solely on the dimensionality of the objective space.
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• AGE-II (ϵgrid = 0.1: . , ϵgrid = 0.01: . ) shows a sig-
nificantly improved performance on the lower-dimensional
DTLZ 1, DTLZ 3, and DTLZ 4 variants. Furthermore, it is either the
best performing algorithm, or in many cases, it shows at least competitive
performance.

• It is interesting to see that our AGE-II incorporates the crowding distance idea
from NSGA-II (. ) for a fitness assignment, but is not influenced by its detri-
mental effects in higher dimensional objective spaces. This is thanks to the way
how the next generation is formed (i.e., based on contributions to the approxi-
mation achieved of the archive, see Line 16 of Algorithm 7.1).

• When compared with the original AGE (. ), then our modification does exhibit
a performance improvement in all cases. Still, as AGE-II shows a consistent
performance across all scaled functions, we deem the minimal loss in quality (in
our experimental setup) as negligible.

• Remarkably, NSGA-II (. ), SMS-EMOA (. ), and
SPEA2 (. ) are unable to find the front of the high-dimensional DTLZ 1
and DTLZ 3 variants. This results in extremely large approximations and zero
hypervolumes.

• The reason for IBEA’s decreasing behaviour for very large dimension (d ≥ 18)
is that it was stopped after 4 hours and it could not perform 100, 000 iterations.
The same holds already for much smaller dimensions for SMS-EMOA (. ), which
uses an exponential-time algorithm to internally determine the hypervolume. It
did not finish a single generation for d ≥ 8 and only performed around 5, 000

iterations within four hours for d = 5. This implies that the higher-dimensional
approximations plotted for SMS-EMOA actually show the approximation of the
random initial population.

• Interestingly, the approximations achieved by NSGA-II (. ) and SPEA2 (. )
are even worse as they are tuned for low-dimensional problems and move their
population too far out to the boundaries for high dimensions.

7.4 Conclusions

Approximation guided evolutionary algorithms work with a formal notion of approx-
imation and have the ability to work with problems that have with many objectives.
Our new approximation-guided algorithm called AGE-II efficiently solves problems
with few and with many conflicting objectives. Its computation time increases only
linearly with the number of objectives. We control the size of the archive which mainly
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determines its computational cost, and thus observed runtime reductions by a factor
of up to 250 over its predecessor, without a sacrifice of final solution quality.

Our experimental results show that given a fixed time budget it outperforms current
state-of-the-art approaches in terms of the desired additive approximation on standard
benchmark functions for more than four objectives. On functions with two and three
objectives, it lies level with the best approaches. Additionally, it also performs com-
petitive or better regarding the covered hypervolume, depending on the function. This
holds in particular for problems with many objectives, which most other algorithms
have difficulties dealing with.

In summary, AGE-II is an efficient approach to solve multi-
problems with few and many objectives. It enables practitioners now to add ob-
jectives with only minor consequences, and to explore problems for even higher
dimensions.

This work has been accepted for publication in the proceedings of the Genetic and
Evolutionary Computation Conference (GECCO) in 2013 [88], and for publication in
the proceedings of the 2013 IEEE Congress on Evolutionary Computation (CEC) [86].
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Figure 7.2: Influence of ϵgrid on the archive size, the runtime, and the final quality. Shown
are the means of the archive sizes, and their standard deviation is shown as error bars.
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(see DTLZ 1 and 3), then the archive can grow and shrink during the optimisation.
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Figure 7.3: Comparison of the performance of our AGE-II (ϵgrid = 0.1:. , ϵgrid = 0.01:. )
with the original AGE (. ), IBEA (. ), NSGA-II (. ), SMS-EMOA (. ), and SPEA2 (. ) with
varying dimension d. The figures show the average of 100 repetitions each. Only non-zero
hypervolume values are shown.

...

..

1

.

2

.

3

.

4

.

5

.

6

.

7

.

8

.

9

.

10−1

.100 .

function

.

ap
pr
ox
im

at
io
n
fo
r
LZ

1-
9

(s
m
al
le
r
=

be
tt
er
)

...

..

1

.

2

.

3

.

4

.

5

.

6

.

7

.

8

.

9

.

10−2

.........

10−1

.........100 .

function

.

hy
pe

rv
ol
um

e
fo
r
LZ

1-
9

(la
rg
er

=
be

tt
er
)

Figure 7.4: Comparison of the performance of our AGE-II (ϵgrid = 0.1:. , ϵgrid = 0.01:. )
with the original AGE (. ), IBEA (. ), NSGA-II (. ), SMS-EMOA (. ), and SPEA2 (. ) with
varying dimension d. The figures show the average of 100 repetitions each. Only non-zero
hypervolume values are shown.
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Figure 7.5: Comparison of the performance of our AGE-II (ϵgrid = 0.1: . , ϵgrid =
0.01: . ) with the original AGE (. ), IBEA (. ), NSGA-II (. ), SMS-EMOA (. ),
and SPEA2 (. ) with varying dimension d. The figures show the average of 100 repetitions
each. Only non-zero hypervolume values are shown. For reference, we also plot (. ) the
maximum hypervolume achievable for µ→∞.
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I was born on the prairies where the wind blew
free and there was nothing to break the light of
the sun. I was born where there were no enclo-
sures.

Geronimo

8
Wind Farm Optimisation

Renewable energy is energy that comes from natural resources, such
as sunlight, wind, tides, and geothermal heat. With renewable energy being a ‘hot
topic’ right now and the renewable energy market rapidly expanding worldwide, the
rapid growth of the renewable energy industry has led to cost reduction challenges. In
order to deal with those complex challenges bio-inspired algorithms have been applied
several times. However, the results achieved so far are not very satisfying, as most of
the underlying models make inaccurate assumptions in order to make the optimisation
process computationally feasible. Moreover, there is often significant room left for
improvements of the results as well.

We are interested in applications of computational intelligence methods to the pro-
duction of renewable energy. Specifically, we are pursuing optimisation challenges
arising in wind power generation. The problem we study in this part of the thesis
arises during the preliminary phase of a wind turbine farm project.

8.1 Introduction

The wind farm layout problem entails the process of planning the placement of turbines
on a potential wind farm site, and the layout design of a wind farm is an important com-
ponent of ensuring the profitability of a wind farm project [95]. There, an inadequate
design would lead to lower than expected wind power capture, increased maintenance
costs, etc. The creation of a ‘good’ farm layout involves the invocation of a software
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optimisation module, which attempts to efficiently place the turbines while adhering to
the constraints and optimising the stated objectives. Often, this module is embedded
within a specialised tool provided by wind power consultants such as Garrad Hassan or
AWS TruePower, who offer a product such as OpenWind [3]. One of the problems that
such tools have to deal with, apart from the actual optimisation, is the scaling cost
of computing wake effects when estimating energy capture for increasing numbers of
turbines. To estimate the energy capture of a layout the optimisation module models
the free stream wind flowing through the site in and out of the turbines. Some degree
of non-linear wind turbulence occurs at the outflow of a turbine and affects the inflow
to turbines close enough behind it. Modeling this effect is necessary because wake
has a great effect on the actual energy output of a wind farm. However, the time for
computing the wake effect with respect to a given wake model such as the Park wake
model [66] takes time Ω(n2), where n is the number of turbines on the wind farm. This
computational effort is significant if one is applying iterative search algorithms such
as local search, simulated annealing or evolutionary algorithms for the optimisation of
the placement. Such methods would need to evaluate each farm layout with respect to
the wake model under consideration and would therefore require time Ω(n2) for each
solution that is considered during the optimisation process.

The goal of our research on the applications of bio-inspired algorithms in renewable
energy production is to create models that are as accurate as possible, and to improve
their computational complexity in order to make the optimisation of complex real-life
scenarios computationally feasible. Additionally, specialised algorithms are designed
that consider the models’ special characteristics.

8.2 State of the Art

The optimal siting of wind turbines on a given area of land is a complex optimisation
problem that is hard to solve by exact methods. The decision space is non-linear with
respect to how sited turbines interact, when considering wake loss and energy capture.

Several bio-inspired computation techniques such as evolutionary strategies [79] (ES),
genetic algorithms [38] (GA) and particle swarm optimisation [49] (PSO) have been
used for the optimisation.

The different approaches for the wind farm layout problem are summarised in [74].
Wan et al. [91–93], use cell-based approaches and compare different bio-inspired algo-
rithms, each applied to the same set of wind farm models and parameters. They use
successively more expressive layout representations (and algorithms)1 to relax where in
a cell a turbine can be located: strictly in the middle, anywhere, or anywhere subject
to proximity constraints with neighbouring turbines. An alternative to cell placement
was explored in [51]: each turbine’s location is a decision variable pair of real-valued,

1from a binary to a real-coded genetic algorithms, to particle swarm optimisation
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spatial (x,y) coordinates. In that paper a simple ES is applied to optimise the place-
ment of the turbines. In general, an ES is effective because it is easily parallelised
and it self-adapts the extent to which it perturbs decision variables when generating a
new potential solution. However, the algorithm given in [51] is only able to deal with
problems that have just a small number of turbines.

For example, in the optimisation formulation in [61], the turbines are placed in regu-
lar grids, and wake is considered by enforcing minimal and maximal distances between
the turbines, thus effectively neglecting physical effects. In [82], distance-dependent
wakes are considered, but the underlying wind scenario was randomly generated, and is
the result of unrealistic assumptions. On the other hand, the above-mentioned indus-
try tool AWS OpenWind contains elaborate wake models that are used for real-world
scenarios, but its simple optimiser neither considers the turbines’ vicinities when per-
turbing layouts, nor adapts parameters for the perturbation during the run.

Note that, placing turbines on a defined area is loosely related to the difficult problem
of packing discs in shapes [42, 80]. There, the task is to arrange n identical discs
without overlap entirely inside a square on the plane, such that the discs have the
largest possible diameter. As the turbines influence each other via non-linear wake-
effects, these “influence areas” can be assumed to be circular for very simple scenarios of
uniform wind distributions.2 The naive goal then can be to minimise the overlap of the
influence discs. However, the theoretical results from the disc packing are not applicable
in our context, as it would be extremely simplifying to assume that these discs are
circular due to non-uniform wind distributions. Additionally, the sizes and irregular
shapes are highly dependent on the interaction of the turbines: due to interactions,
the wind resources available at a turbine change, and so does then the influence area
around a turbine.

In summary, related work typically has the following three drawbacks:

• Cell based approach: It allows limited flexibility in the layout optimisation be-
cause a layout consists of cells, which each have a turbine at the centre of the
cell.

• Small number of turbines: It usually optimises for a farm size of 8-30 turbines.

• Limited Scalability: Previous approaches have been very time consuming, re-
quiring up to several weeks for a single optimisation run for large wind farm
layouts.

In the subsequent Chapters 9 and 10 we present approaches that solve these issues.

2Note that these discs are not necessarily of infinite size, as a cut-off distance can be set once the
influence becomes negligible.
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Table 8.1: Wake modelling: symbol definitions

Number of turbines n
Wind velocity v

Wind direction 00 < θ < 3600

Farm radius r
Rotor diameter R

Weibull distribution for wind speed pv(v, k, c) =
k
c

(
v
c

)k−1
e−(v/c)k

Weibull shape parameter k

Weibull 1scale parameter c

Wind direction distribution P (θ)

Expected power of a single turbine i Ei[η]

Piecewise power curve of turbine β(v) =


0 v < vcut_in

λv + γ vcut_in ≤ v ≤ vrated

Prated vrated < v < vcut_out

8.3 Wake Modelling

Before we can present our algorithms for breaking the 1000 turbine barrier, we need
to establish the conditions under which we evaluate the layouts. We follow Kusiak
and Song [51] and formulate the layout problem as follows. Let X = {x1, . . . , xn} and
Y = {y1, . . . , yn} be the x and y coordinates of the n turbines.

Our goal is to identify a layout that maximises the energy capture from a given farm

argmax
(X,Y )

η(X,Y, v, β(v)) (8.1)

where v is the wind speed, and the function β(v), known as a power curve, gives the
power generated by a specific turbine for a given wind speed. Wind speed v however
is a random variable with a Weibull distribution, pv(v, c, k), which is estimated from
wind resource data. This distribution also changes as a function of direction, θ which
varies from 00 − 3600, yielding a probability density function for different θ given
by pv(v(θ), c(θ), k(θ)). Additionally, wind flows from a certain direction with some
probability P (θ). These different pieces of information are inputs to the algorithm and
are summarised in Table 8.1. Due to the random nature of wind velocity, the objective
function in Equation 8.1 is transformed to evaluate the expected value of the energy
capture for a given wind resource and turbine positions. For a single turbine, this value
can be calculated using

Ei[η] =

∫
θ

P (θ)

∫
v

pv(v(θ), c(θ), k(θ))β
i(v). (8.2)
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Equation 8.2 evaluates the overall average energy over all wind speeds for a given wind
direction, and then averages this energy over all the wind directions. However, during
the resource assessment, the wind speed distributions are estimated for discrete wind
direction bins. Hence the above integral is discretised along the wind direction. Fur-
thermore, the wind speed is discretised in order to proceed with numerical integration.
For more details, we refer the interested reader to [51].

8.3.1 Wake Modelling

The above formulation of expected energy capture, assumes identical wind resources,
i.e., pv(v(θ), c(θ), k(θ)) and P (θ) at each turbine. However, a significant factor that
diminishes efficient energy capture is the wake effect: the so-called “down wind exhaust”
from one turbine alters the free stream inflow into a turbine behind it. When optimising
a layout, the wake affect is calculated as a modification of the estimated wind resource
that is available for a turbine i due to its location and the location of other turbines.
Like others [51], we make some simplifying assumptions for illustrative purposes in
this paper. We use the modified Park wake model [66]. We are aware that, for a large
number of turbines, it is not as appropriate as the deep array wake model [6]. The
latter could be additionally imposed without modifications to our algorithms. The
procedure for the evaluation of the wake effects due to the Park model is shown below
in Algorithm 8.1.

As can be seen from Algorithm 8.1, the wake effects on a turbine i change the wind
resource available to it along different directions by reducing the scale parameter of the
Weibull distribution estimated for the entire farm, which is also called the freestream
wind resource. This is dependent on its location and the location of the rest of the
turbines. Hence, Equation 8.2 is modified to reflect this to

Efarm[η] =
∑
i

∫
θ

P (θ)

∫
v

p(v(θ), ci(θ,X, Y ), k(θ))βi(v). (8.3)

In this equation v is the wind speed, and the function βi(v) defines the power curve
for turbine i. Wind speed v however is a random variable with a Weibull distribution,
p(v(θ), ci(θ,X, Y ), k(θ)), which is estimated from wind resource data and considers the
wake effect using X and Y . This distribution is also a function of the wind direction, θ
which varies from 00−3600. Note that the shape parameter of the Weibull distribution
is not influenced by the Wake effects here. Additionally, wind flows from a certain
direction with some probability P (θ).

The goal of the optimisation problem is to maximise Equation 8.3. In the following
subsection, we present the constraints and assumptions we made for the optimisation
problem.
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8.3.2 Constraints and Assumptions

The first constraint enforces an upper bound on the area of the farm. This constraint
ensures that we can only place a turbine within a certain area, which is a realistic
constraint for most layout problems. For a circular farm with radius r and the origin
as the centre, this constraint is satisfied iff

sqrt(x2
i + y2i ) ≤ r,∀i. (8.4)

For a rectangular farm with length l and width w this constraint is satisfied iff

0 ≤ xi ≤ l & 0 ≤ yi ≤ w, ∀i. (8.5)

The second constraint regulates the spatial proximity, as it dictates the min-
imal distance within which two turbines can be set up. It is satisfied iff√

(xi − xj)2 + (yi − yj)2 ≥ MR, ∀i∀j where R is the rotor radius and M is a prox-
imity factor usually decided ahead of the optimisation based on the make and model
of the turbines used. We use M = 8 based on the industry standard.

In addition to the above constraints, we assume that all turbines have the same
power curves (approximated as piecewise linear functions) and that the same wind
resource spans the entire farm.3 The assumptions can be revised in a very straight
forward manner to generate more realistic scenarios.

Note that our implementation of the Park wake model and of the constraint checker
is publicly available, in order to facilitate comparability of future results:
http://cs.adelaide.edu.au/~ec/research/windfarmlayout.php

3To increase accuracy, these resources can be estimated for different parts in the farm.
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8.3. WAKE MODELLING 99

Algorithm 8.1: Procedure for evaluation of wake effects due to the Park model
[51]

1 Given {X,Y } as turbine locations, turbine thrust coefficient CT , rotor diameter
R, landscape-specific wake spreading factor κ ;

2 a = 1−
√
1− CT , b = κ/R, u⇐ unit step function,

o = (xi − xj)cosθ + (yi − yj)sinθ;
3 di,j = ∥o∥, α = tan−1κ;
4 for i = 1 to number of turbines do
5 for θ = 00 to 3600 do
6 for j = 1 to n-1 and j ̸= i do

7 δi,j = cos−1

(
o+R/κ√

(xi−xj+
R
κ
cosθ)2+(yi−yj+

R
κ
sinθ)2

)
;

8 V def(i,j) = u(δi,j − α) a
(1+bdi,j)2

;

9 V def θ
i =

√∑
j(V def θ

(i,j))
2;

10 ci(θ) = ci(θ)× (1− V defi);



100



I hear, I know.
I see, I remember.
I do, I understand.

Confucius

9
Optimising the Layout of 1000 Wind

Turbines

For the layout of hundreds, then 1000, turbines, we demonstrate an accu-
rate, efficient, and parallelisable optimisation algorithm in this chapter. It is modular
and therefore allows different wake effect models to be incorporated. Its computational
cost is a relation that depends upon how many candidate layouts it investigates and
the complexity of its wake loss calculation. We demonstrate how well it maximises en-
ergy capture and show how it allows one to examine how wake loss scales with energy
capture and number of turbines.

9.1 CMA-Evolutionary Strategy

The Covariance Matrix Adaptation based evolutionary strategy (CMA-ES) was devel-
oped by Hansen [43] and it forms the basis of our first approach. It is summarised in
Algorithm 9.1. Over the course of an optimisation, CMA-ES self-adapts the covariance
matrix of a multivariate normal distribution in order to guide the search. This normal
distribution is then used to sample from the multidimensional search space where each
variate is a search variable. The co-variance matrix allows the algorithm to respect the
correlations between the variables making it a powerful evolutionary search algorithm.
Consider a representation xk for the kth solution to the optimisation problem that
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Algorithm 9.1: Covariance Matrix Adaptation Based Evolutionary Strategy [43]
1 for t = 1 to maxiter do
2 Sample x

(t)
i using Equation 9.6, evaluate energy capture for xi,∀i

3 Select µ members of the population
4 Update the mean using

m(t+1) =

µ∑
i=1

wix
(t+1)
i , such that

µ∑
i=1

wi = 1 and wi > 0 (9.1)

5 Update standard deviation σ(t+1) using

p(t+1)
σ = (1− cσ)p

(g)
σ +

√
(cσ(2− cσ)µeffC

(t)−1
2
m(t+1) −m(t)

σ(t)
and (9.2)

σ(t+1) = σ(t)exp(
cσ
dσ

(
||p(t+1)

σ ||
E||N (0, I)||

− 1)) (9.3)

6 Update covariance matrix using

p(t+1)
c = (1− cc)p

(t)
c + h(t+1)

σ

√
cc(2− cc)µeff

m(t+1) −m(t)

σ(t)
(9.4)

C(t+1) = (1− ccov)C
(t) +

ccov
µcov

(p(t+1)
c p(t+1)T

c ) + ccov(1−
1

µcov

)C(t+1)
µ (9.5)

attempts to minimise the objective function f(x). In each iteration, t, the algorithm
samples λ number of solutions from a multivariate normal distribution given by

x
(t+1)
k = N (m(t), (σ(t))2C(t))∀k. (9.6)

where m(t) is the mean, σ(t) is the standard deviation and C(t) is the covariance matrix
for a multivariate normal distribution represented by N . t represents the iteration in-
dex. The goal of the algorithm is to then adapt m, σ and C as optimisation progresses.
The simplest type of adaptation can be achieved by selecting a subset of µ solutions
that perform the best in terms of the objective function, and estimating the parameters
of the multivariate normal distribution based on these solutions. This can be simply
done using

C(t+1)
µ =

µ∑
i=1

wi

(
x
(t+1)
i −m(t)

)
σ(t)

(
x
(t+1)
i −m(t)

σ(t)

)T

(9.7)

102



More sophistication to this adaptation can be added as shown in Equation 9.5, such
as using weighted sums of the matrices, and the adaptation of the step-size.
Rank µ update: This is summation of two terms, i.e., Equation 9.7 weighted by
ccov(1 − 1

µcov
) and (1 − ccov)(C)(t). Thus this generates a weighted sum of covariance

matrix from previous iteration, and the estimate of the covariance from µ best per-
forming samples in the current iteration.
Cumulation: This captures the direction of the movement of mean as iterations
progress. This is calculated using Equation 9.4 and setting p

(1)
c = 0 initially. Note

that the contribution of the previous iterations is controlled using a weight 1 − cc.
h
(t+1)
σ is a Heaviside function that stalls the update of p(t)

c if ||p(t+1)
σ || is large [43].

Step size control: This provides a mechanism to control the variation in σ(t). To
achieve this an evolution path pσ is evaluated using eigen decomposition of C(t), which
is C(t)−1

2 , and the change in the means. This value is then used to determine the new
value of σ(t+1) as shown in Equation 9.3. E||N (0, I)|| is the expectation of Euclidean
norm of a N (0, I).
Table 9.2 summarises the CMA-ES parameters we selected. Initial values are set as
follows: p

(0)
σ = 0, p(0)

c = 0, C(0) = I. Values for parameters wi, cσ, dσ, cc, µcov, ccov are
set to their default values as described in [43]. For a more detailed intuition about
these parameters the reader is referred to [43].
Constraint handling: Our algorithm takes care of the constraints in the following
ways. Initially, it places the n turbines on a regular s × t grid. There, the grid is
constructed in such a way that the distance between the rows and columns is maximal,
including the placement of turbines on the borders of the wind farm area.1 This is a
straightforward approach of placing a number of turbines within an area, which can
be observed to be frequently used in practice. Additionally, this approach proved to
serve as a very good starting point, as the initial distance between the turbines is max-
imised in a naive way. Thus, the wake effect is already reduced to some extent (when
compared to tighter layouts), even without considering the directional distribution of
the wind.

Furthermore, when turbines violate the wind farm border constraint, we fix such
placements by setting these right back onto the borders. This repair significantly
reduces the time that is spent on the creation of a new layout, as the high likelihood
of violating this constraint would otherwise require a significant number of repeated
trials of creation.

Finally, when a layout has a turbine which violates the proximity constraint, we
replace the layout entirely with a new, randomly generated feasible layout which allows
the optimisation to continue. During our experiments, this circumstance was rare, as
the turbines tend to be moved primarily by small distances per iteration.

1If s · t > n, then the last column is not filled completely.
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l θl θl+1
Scenario 1 Scenario 2

l θl θl+1
Scenario 1 Scenario 2

k c P (θ) k c P (θ) k c P (θ) k c P (θ)

0 0 15 2 13 0 2 7 0.0002 12 180 195 2 13 0.01 2 10 0.1839
1 15 30 2 13 0.01 2 5 0.008 13 195 210 2 13 0.01 2 8.5 0.1115
2 30 45 2 13 0.01 2 5 0.0227 14 210 225 2 13 0.01 2 8.5 0.0765
3 45 60 2 13 0.01 2 5 0.0242 15 225 240 2 13 0.01 2 6.5 0.008
4 60 75 2 13 0.01 2 5 0.0225 16 240 255 2 13 0.01 2 4.6 0.0051
5 75 90 2 13 0.2 2 4 0.0339 17 255 270 2 13 0.01 2 2.6 0.0019
6 90 105 2 13 0.6 2 5 0.0423 18 270 285 2 13 0.01 2 8 0.0012
7 105 120 2 13 0.01 2 6 0.029 19 285 300 2 13 0.01 2 5 0.001
8 120 135 2 13 0.01 2 7 0.0617 20 300 315 2 13 0.01 2 6.4 0.0017
9 135 150 2 13 0.01 2 7 0.0813 21 315 330 2 13 0.01 2 5.2 0.0031
10 150 165 2 13 0.01 2 7 0.0994 22 330 345 2 13 0.01 2 4.5 0.0097
11 165 180 2 13 0.01 2 9.5 0.1394 23 345 360 2 13 0 2 3.9 0.0317

Table 9.1: Wind Scenario 1 and Scenario 2

9.2 Results and Discussion

We use the wind resources Scenario 1 and Scenario 2 as defined in [51] (see Table 9.1).
The wind direction is binned in 150 intervals. Scenario 1 has the same scale and
shape parameters for the Weibull distribution for all bins. Scenario 2 has the same
shape parameter for the bins, but different scale parameters. The shape parameter
k increases the spread of the Weibull distribution as it gets larger. In Scenario 1,
the dominant wind directions are 750 - 900 (with P (θ) = 0.2) and 900- 1050 (with
P (θ) = 0.6). There is no wind coming from 00- 150, and 3450- 3600. For the rest of the
bins the P (θ) = 0.01.

Scenario 2 is more complex and realistic. The shape parameter is the same for all
bins, however, the scale parameter is different for different bins and ranges from 4 - 10.
Similarly, P (θ) also varies over the range 0.001 to 0.1839. It is more difficult to nomi-
nally identify competent layouts as there is no prominent wind direction. In Scenario
1 one can optimise for the prominent directions and not lose significant efficiency. In
Scenario 2, one has to optimise the layout to work with minimum wake loss along all
the wind directions.

The different metrics that we use to evaluate multiple layouts are presented in Ta-
ble 9.3.

104



n=2…9 n=10…100 n=200…500 n=1000
(µ, λ) (20, 120) (10, 20) (10, 20) (10, 20)

(generations, runs) (100, 30) (10000, 30) (10000, 5) (20000, 1)
farm size (km) r=0.5 l=w=3 l=10, w=20 l=10, w=20

Table 9.2: CMA-ES and experiment parameters. Population is expressed with two variables,
µ defines the parent population size and λ the number of offsprings generated from the parent
population each generation.

Metric Definition
Ewlf Wake loss free power
E power achieved by layout optimiser
Eloss Power loss due to wakes
Gn Power gain achieved by layout

optimiser via adding n turbines
Gwlf
n Wake loss free power

capture of adding n turbines
Glossn Gwlf

n − Gn

Table 9.3: Metrics used to evaluate multiple layouts.

9.2.1 Results

Case A: 2-6 turbines

In this case, we validate the accuracy of CMA-ES by showing how it is comparable
to small scale results of [51]. Each optimisation run of CMA-ES evaluated the same
number of candidate layouts as [51] for fairness. Due to the stochastic property of
ES, we run the ES multiple times and report ‘best of runs’ meaning the energy loss
of the best layout found when all runs are compared and ‘average best’, which is the
average energy loss of the best layout in each run. Using [51]’s scenarios, the plots of
Figure 9.1 show that the Kusiak et al algorithm, called “SPEA-2” [51, 98], and our
modified CMA-ES are equivalently effective. We plot the maximum energy capture
(before wake loss is subtracted), and the net energy capture (after subtracting wake
loss). With 6 turbines, using scenario 2, the energy capture without wake effects would
be 43894 kW . SPEA-2’s layout loses 698 kW to wake effects and CMA-EA’s layout
loses, on average 440 kW (approximately 36% improvement).

Case B: 10-100 turbines

We choose Scenario 2 because it is a more complex wind resource. Then we attempt
to place 10 to 100 turbines at 10 turbine increments in a 9 km2 rectangular area.
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Figure 9.1: Comparison of Kusiak et al.’s SPEA-2 algorithm [51] and our adjusted CMA-
ES, left: Scenario 1, right: Scenario 2. The results are not significantly different and are
comparable.
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Figure 9.2: Performance of CMA-ES for 10 to 100 turbines under Scenario 2. Left plot
shows energy capture climbs up as we add turbines. Right plot shows how adding each new
set of 10 turbines helps despite the increase in wake losses.

Figure 9.2(left) shows the energy capture under wake loss. Wake loss is indicated by
the gap between max energy and energy capture. Figure 9.2(right) and Figure 9.4(left)
show that the value of adding each additional set of 10 turbines slowly declines, while
the total wake loss rises considerably. The decline may be explained by additional
interference due to squeezing more turbines into the farm. The net energy capture and
wake loss rise from 73154 kW and zero respectively with 10 turbines to 619133 kW and
112405 kW respectively with 100 turbines. As in the validation case, packing turbines
more tightly into the same area creates higher wake loss. Figure 9.5(left) shows the
displacement of 50 turbines from their initial positions at the end of a CMA-ES run.
The turbines were placed in a grid initially.At the end of the run the turbines were
displaced by a few meters. Figure 9.5(right) summarises the displacements of turbines
from their initial positions for 30 independent runs of CMA-ES. The turbines moved
15-20 meters from their initial placements.
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Figure 9.3: Performance of CMA-ES for 200 to 1000 turbines under Scenario 2. Left plot
shows energy capture climbs up as more turbines are added. Right plot shows how adding
each new set of 100 (500 between n = 500 and n = 1000) turbines helps despite the increase
in the wake losses.
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Figure 9.4: (a) The plot shows how the ratio of energy loss due to wake to total capture
increases with each additional set of 10 turbines. As well as the gain achieved by adding
each additional turbines starts to decrease. This is characteristic of the layout problem when
more turbines are squeezed in the same area. (b) This plot shows the same metric evaluated
for layouts consisting of 200 -1000 turbines.

Case C: Breaking the 1000 turbine barrier

What happens when 200 to 1000 turbines are located in a rectangle of 200 km2?
Figures 9.3 and Figure 9.4(right) show, for this turbine range, information similar
to that of Figures 9.2 and 9.4(left). The net energy capture ascends in sequence
(1440, 2130, 2813, 3465) MW when turbine number grows from 200 to 500 by 100 tur-
bine increments. The corresponding wake loss sequence is (23, 64, 113, 193)MW . At
1000 turbines, the net energy capture is just less than double that of 500 turbines:
6554 MW because the wake loss rises from 193 MW to 761 MW . The non-linear
trend in wake loss, again, arises from packing more turbines into the same area.
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Figure 9.5: Mean and standard deviation of displacement of turbines for 30 independent
runs of CMA-ES (right)

9.2.2 Cost of the algorithm

One metric of evaluation is elapsed time. We ran a parallelised version of our modified
CMA-ES on 20 cores when running large layouts (for 1000 turbine problem). This is
crucial because just one wake loss calculation for a 1000 turbine layout takes about 30
seconds (on an Intel Xeon E7530, 1.87GHz). A realistic version of this optimiser would
account for many additional details, such as cabling costs, but the dominating factor in
expense would still be calculating wake loss when evaluating the net energy capture of
a layout as other become asymptotically insignificant. The wake loss calculation scales
quadratically with the number of turbines. The cost of one layout evaluation must
be multiplied by the total layout evaluations run by the optimiser. For CMA-ES this
latter factor is the product of offspring pool size, µ, and the number of generations.
For example, each layout of 1000 turbines, on average requires 30 seconds to evaluate
net energy capture. If we run CMA-ES with an offspring pool of 20 for 20000 genera-
tions so the run requires, serially, roughly 12,000,000 CPU seconds or about 140 days.
With parallelisation, the elapsed time of the optimisation was approximately 12 days
implying the speedup is sub-linear. To optimise 200 and 500 turbines serially, it would
have taken about 3 and 19 days respectively but, with parallelisation on 2 processors,
this averaged to 1.3 and 13 days.

9.3 Conclusions

In this chapter, we have presented an advanced evolutionary algorithmic approach that
learns the statistical properties of the better layouts and makes use of them to generate
even better layouts. This property is advantageous for layout optimisation because the
optimal position of a turbine depends upon its neighbours’ positions.
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We demonstrated the algorithm on layout problems involving 100’s and even 1000
turbines. The stochastic nature of the algorithm demands performing multiple inde-
pendent trials. One fortuitous feature of this requirement is that the multiple trials
provided different layouts that were equally competent in their energy capture. This
allows one to late impose additional objectives to make a selection among these com-
petent designs. The algorithm was parallelised on multiple cores to achieve significant
speed-ups.

This work has been published in the proceedings of the European Wind Energy
Association Event 2011 [89].
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The pessimist complains about the wind; the op-
timist expects it to change; the realist adjusts the
sails.

William Arthur Ward

10
A Problem Specific Local Search Method

Our first approach to the problem performed reasonably well, but
was computationally expensive. In the following, we describe the design of a fast
and effective randomised local search algorithm to act as a farm layout optimisation
module. This new algorithm

1. uses a fast approach for evaluating new layouts,

2. makes effective use of the problem characteristics to produce new layouts, and

3. can efficiently handle infeasible regions in order to respect geographical con-
straints.

To be precise, where previous algorithms required time Ω(n2) for the computation
of the wake effects within a new layout, the algorithm that we present in this chapter
requires Θ(kn), where n is the number of turbines on the wind farm, and k the number
of turbines whose location was changed over the previous layout.

The new local search algorithm is capable of generating good layouts for hundreds
of turbines quickly on standard computers, without the need of specialised computing
hardware. This allows it to accommodate the emerging requirements of larger farms.
For example, the Horse Hollow Wind Energy Center in Texas, USA operates with 735.5
megawatt capacity and consists of more than 300 turbines spread over nearly 47,000
acres (190 km2). We compare our new algorithm to two approaches: the CMA-ES
approach presented in Chapter 9 and the local search approach used in the industry
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tool AWS OpenWind. Our experiments show that the new algorithm outperforms both
approaches in terms of the quality of the results and the running time.

In this chapter, we proceed as follows. Section 10.1 describes our algorithm. Sec-
tion 10.2 gives details about our experiments, and discusses the outcomes. Then, the
capability to deal with infeasible areas is shown, using a scenario based on an exist-
ing near-shore wind farm. Finally, Section 10.4 summarises our findings and outline
potential future work. Note that the optimisation task at hand is identical to that of
Chapter 8, and we refer to reader to said chapter for the description of the wind farm
layout problem.

10.1 Turbine Distribution Algorithm

In the following, we describe our algorithm for the optimisation of wind farm layouts. It
includes a problem specific local search operator and a faster evaluation, which makes
use of the fact that we always change the position of exactly one turbine.

10.1.1 Computational Speedup

First, we describe how computation time can be saved, if the new layout differs from
the old one only in the location of a single turbine.

For the computation of the (turbine-specific) wind resources, the Weibull scale pa-
rameters are adjusted up to 24× n2 times (line 10 of Algorithm 8.1, Section 8.3.1), as
the wind direction is discretised into 24 wind directions in our model, and the mutual
influence of the n turbines has to be considered. The computation of the influence
matrix results in an evaluation time that is quadratic with the number of turbines,
causing evaluation times of up to 30 seconds on standard hardware for a 1000 turbine
layout.1

As our optimisation algorithm modifies only a single turbine of the current layout,
the evaluation can be speeded up by updating the velocity deficits in line 10 of Algo-
rithm 8.1 intelligently. First, for a moved turbine i the influence of all other turbines
on i has to be computed conventionally, requiring n-1 influence checks. Second, the
other turbines’ velocity deficits have to be updated as i’s influence on these may have
changed. This can be done as follows. For each such unmoved turbine j:

V def θ,NEW
j =

√(
V def θ,OLD

j

)2
−
(
V def θ,OLD

(j,i)

)2
+
(
V def θ,NEW

(j,i)

)2
(10.1)

where V def θ,OLD
j is the velocity deficit the turbine j experiences in the old layout, and

V def θ,OLD
(j,i) is the influence that i had on j, for a given wind direction θ.

1This test and all subsequent experiments were performed on AMD Opteron 250 CPUs (2.4GHz),
on Debian GNU/Linux 5.0.8, with Java SE RE 1.6.
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Over the course of the algorithm’s run, we only have to initially create the three
dimensional array carrying all mutual influences for all wind directions once. In sub-
sequent evaluations, we can use and update this matrix to speed-up the evaluations.
Generalised, this allows for a resulting runtime for such a subsequent evaluation of only
Θ(kn), when the locations of k out of n turbines were changed.2

10.1.2 The Algorithm

It is clear that the constraints discussed in Section 8.3.2 are vital to the construction of
the algorithm. To ensure constraint handling in the optimisation, a random local search
algorithm was purpose-built for the application. The turbine distribution algorithm
(TDA) described in Algorithm 10.1 and Figure 10.1 iteratively displaces a single turbine
in order to increase the energy gain while ensuring constraints are upheld.

In order to ensure that the turbines’ initial placement respects the safety distance
constraint, our TDA follows the approach taken in Chapter 9. There, the algorithm
deterministically initializes the turbines in a grid formation of greatest space. The
grid is constructed in such a way that the distance between the columns and rows
is maximised, including the placement of turbines on the borders of the wind farm
area. This is a straightforward approach, which is used frequently in practice, as the
wake effect is already reduced to some extent (when compared to tighter layouts), even
without considering the directional distribution of the wind.

Over the course of the optimisation, new layouts are created based on the best-so-far
turbine configuration. For the next layout, a copy of the best-so-far is made, and a
modification is then applied, in which a single turbine is selected uniformly at random
and is shifted by a displacement vector v⃗′. In the following, we motivate our way to
compute this displacement vector.

Initially, the vector v⃗ is determined by the normalised sum of the difference in dis-
tance between the current turbine and its nn nearest neighbours. The displacement
of the current turbine by v⃗ would move the turbine away from the nearest neighbours.
In order to ensure non-deterministic performance within sensible limits, TDA applies
a normal distribution with a fixed standard deviation to the direction of the vector
and uses an adaptable standard deviation on a 0 mean over a normal distribution to
determine the distance for the vector. As a superior energy output for the wind farm
could be obtained by moving turbines closer together, this new vector may be randomly
reversed with a preset probability.

In the next step, the new location of the turbine after displacement by the resultant
vector v⃗′ is investigated to ensure that it would not be placed in an illegal position,
currently defined as outside the wind farm bounds or too close to another turbine. If

2We use k = 1 in our experiments, which results in a significant speed-up (see Table 10.1).
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Algorithm 10.1: Turbine Distribution Algorithm (TDA)
1 Given number of turbines n, map bounds xmax, ymax, nearest neighbours nn,
reversal probability p, displacement distance standard deviation σ{dis}k for
k ∈ {1, . . . , n}, and direction standard deviation σ{dir}k for k ∈ {1, . . . , n}, place
{X, Y } = {[0, . . . , xmax], [0, . . . , ymax]}n in the grid formation of greatest space;

2 Determine f({X, Y }) as per Equation 8.3;
3 for i = 1 to number of evaluations do
4 Set {X, Y }′ = {X,Y };
5 Select turbine k uniformly at random for the ith modification, denote as

{x′
k, y

′
k};

6 Determine nearest neighbours: {x′′
1, y

′′
1}, ..., {x′′

nn, y
′′
nn};

7 v⃗ =
(∑nn

j=1 x
′
k − x′′

j ,
∑nn

j=1 y
′
k − y′′j

)
;

8 v⃗ = v⃗/||v⃗||;
9 Select θ normally distributed over µ = ∠v⃗ and σ = σ{dir}k;

10 Select d normally distributed over µ = 0 and σ = σ{dis}k;
11 v⃗′ = θ ∗ d;
12 Set v⃗′=−v⃗′ with probability p, as tighter groups may increase the farm’s

output;
13 If applying v⃗′ would place {x′

k, y
′
k} in illegal area, reduce length of v⃗′ until

legal;
14 Displace {x′

k, y
′
k} by v⃗′;

15 Determine f({X, Y }′) as per Equations 8.3 and 10.1;
16 if f({X,Y }) ≤ f({X,Y }′) then
17 Set {X, Y } = {X,Y }′;
18 Increase σ{dis}k;

19 else
20 Decrease σ{dis}k;

Figure 10.1: Illustration of vector displacement using TDA with nn = 2.

the turbine would be in an illegal position, the distance of v⃗′ is reduced to a legal value.
An example of this displacement using nn = 2 may be seen in Figure 10.1. Note that,
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in this example, the two nearest neighbours of the current turbine are turbines 3 and
4, and hence these are the only turbine locations that affect the new position of the
current turbine.

At the conclusion of this layout modification, the quality of the new layout is com-
pared against that of the best-so-far, using Equation 8.3 and the computational speedup
presented above. If the new potential solution is of higher quality, it replaces the pre-
vious best.

Furthermore, when the quality of the layout improves due to the displacement of
a turbine, the above-mentioned adaptable standard deviation for the distance of that
particular turbine increases to allow for increased exploration. Similarly, when the new
layout is of lower quality due to the displacement of a turbine, the standard deviation
of this particular turbine decreases to allow displacement exploitation. Effectively, this
gives TDA the ability to autonomously switch between exploration and exploitation.
There will be local optima due to the local search properties of the algorithm, and
our strategy to increase the potential of escape is the combination of n adaptable
displacement parameters, in combination with values drawn randomly from different
normal distributions.

10.2 Experimental Investigations

In order to justify our design decisions, we performed experimental investigations on
which we report in the following. First, we introduce the scenario that defines the wind
resource present at an imaginary prospective site of a wind farm. Then, we describe
TDA’s parameter settings and the test scenarios for the subsequent comparative study.
There, we compare the solution quality and runtime of our algorithm to a tuned version
from Chapter 9 and the industry tool AWS OpenWind [3].

10.2.1 Algorithm Settings and Scenario Information

To evaluate our algorithm’s performance we set up a realistic scenario with the wind
resources defined as Scenario 2 in [51] (see Table 9.1), which allows for a direct com-
parison with the results reported in Section 9.2. Again, the prevailing wind direction
covers a broad sector of about 105◦, and the wind intensity per direction is given by
Weibull distributions. This results in non-zero probabilities for wind coming from any
direction, and therefore, one has to optimise the layout to work with minimum wake
loss along all the wind directions.

For the subsequent experiments, the internal parameters of our algorithm were set
as follows.

The direction standard deviation is set to σ{dir}i = π/6 for all i turbines. Thus, the
resulting displacement direction will be within ±300 with a probability of 68.2% of all
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Figure 10.2: Study: influence of the number of considered nearest neighbours on the per-
formance. Shown is the energy gain and its standard deviation achieved over the initial
layout.

directional adjustments, and within ±600 with a probability of 95.4%. Furthermore,
the reversal probability of the displacement was set to p = 0.2.

The displacement distance standard deviation σ{dis}i is set and adjusted by the
algorithm for each turbine individually, depending on the initial layout. If the minimal
initial distance between turbines is d, then σ{dis}i = (d− 8R)/3. Thus, we restrict the
displacements to small distances, while considering the safety distance of 8R between
the turbines.

As described in Section 10.1, these parameters are adjusted over the course of the
optimisation depending on whether recent displacements were successful or not. This
allows for an efficient exploration as well as exploitation. The number of turbines n,
the map bounds xmax, ymax, and the number of nearest neighbours nn are specific to
the scenario.

10.2.2 Impact of the Nearest Turbines

In order to understand the influence of the number of nearest neighbouring turbines nn
that influence the relocation of a chosen turbine, we ran an initial set of experiments.
We chose the scenarios with 40, 100, and 400 turbines, and ran each experiment with a
budget of 10,000 evaluations. nn varied from 1 to 8, and the results of 100 repetitions
per scenario are shown in Figure 10.2.

We noticed that the number of nearest neighbours sometimes has some influence on
the performance of the algorithm. Depending on the scenario, a smaller value of nn
seems to be beneficial. For example for the 100 turbines scenarios, using nn = 2 instead
of nn = 8 yielded in layouts with an increased energy output of 1.1% on average. For
the 40 turbine scenario, however, the maximum distance in the averages is only 0.6%,
and for the 400 turbines just 0.1%. A possible explanation is that with four and eight
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neighbours, the influence of two opposing neighbouring turbines is cancelled out: the
resulting displacement vector for a selected turbine just has a ‘unspecific’ direction,
instead of an ‘explorative’ direction as is the case when only one or two neighbours are
considered.

10.2.3 Experimental Results

To assess the performance of our algorithm, we compare it directly with the results from
Chapter 9 and the approach implemented in AWS OpenWind. In our computational
study, we set up several scenarios with varying numbers of turbines, and varying farm
sizes. For n = 10, 20, . . . , 100 a quadratic farm of 3 × 3km2 was chosen, and for
n = 200, 300, 400, 500, 1000 rectangular farms of 8 × 5km2, 10 × 6km2, 12 × 6km2,
14 × 7km2, and 20 × 10km2. Note that these wind farm dimensions differ from those
listed in Table 9.2. The new dimensions are chosen such that roughly 2n turbines fit on
the available land. With the setups of Table 9.2, a lot more land is available and thus
the wake effects are a lot less dominant, which result in less challenging optimisation
problems.

To allow for a better comparison with the CMA-ES algorithm presented in Chap-
ter 9, where 10,000 generations with a total of 200,000 evaluations were performed, we
ran our algorithm for 10,000 and 200,000 evaluations—we stopped the algorithms if
no improvement was reached after 1,000 evaluations. In order to compare our TDA
not only to an academic system, we additionally implemented the optimiser compo-
nent that is part of the industrial tool AWS OpenWind, and ran it for a maximum of
200,000 evaluations. Quickly, we noticed that given the wide range of scenarios, the
original CMA-ES fails to produce consistent results—in particular, it performed poorly
for 70 and 80 turbines. Despite the fact that it has elaborate adjustment capabilities,
it is not always capable of learning the problem-specific features of the solution space
within reasonable run-times. Through the increase of CMA-ES’s initial standard de-
viation, the explorative phase was extended, and we were able to increase its quality
performance on these two particular scenarios to a level comparable with TDA. In the
following, we refer to this tuned version as CMA-ES*.

The initial layout, where turbines are placed in a maximally spaced grid, was identical
for all algorithms. Each scenario was repeated 30 times, and the results are listed in
Table 10.1 and in Figure 10.3.3 As can be seen, our algorithm’s results (when using
only 10,000 evaluations) are comparable to those of CMA-ES*, and in many cases
have a higher solution quality. Additionally, our algorithm just uses a fraction of the
evaluations and of the time to reach the results. Exemplarily, the academic CMA-ES*

3In the scenarios with 10 and 20 turbines, the turbines are placed very far away from each other,
with just minimal wake effects occurring.
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Table 10.1: Results. Reported are the predicted energy outputs in kW (average and maxi-
mum values, and the standard deviation), time in hours. The algorithm with the best average
energy output has been highlighted in bold, the second-best in italics.

CMA-ES* 200k OpenWind 200k
n Initial avgstdev max time avgstdev max time
10 7.290E+4 7.306E+43.63E+1 7.315E+4 0.10 7.290E+40.00E+0 7.290E+4 0.01
20 1.448E+5 1.448E+50.00E+0 1.448E+5 0.05 1.448E+50.00E+0 1.448E+5 0.01
30 2.015E+5 2.096E+51.73E+2 2.100E+5 1.29 2.052E+51.17E+3 2.067E+5 0.01
40 2.630E+5 2.742E+52.07E+2 2.746E+5 2.01 2.671E+58.08E+2 2.688E+5 0.02
50 3.247E+5 3.367E+53.01E+2 3.372E+5 3.82 3.269E+57.28E+2 3.282E+5 0.03
60 3.688E+5 3.947E+53.47E+2 3.953E+5 5.45 3.837E+51.19E+3 3.858E+5 0.04
70 4.341E+5 4.435E+58.98E+3 4.559E+5 5.90 4.370E+59.03E+2 4.389E+5 0.07
80 4.707E+5 5.077E+51.02E+3 5.098E+5 9.78 4.884E+51.18E+3 4.906E+5 0.08
90 5.207E+5 5.541E+51.22E+3 5.567E+5 9.64 5.333E+51.02E+3 5.356E+5 0.10
100 5.535E+5 5.994E+52.18E+3 6.029E+5 14.0 5.762E+51.48E+3 5.784E+5 0.14
200 1.248E+6 1.301E+64.36E+2 1.302E+6 40.1 1.273E+62.63E+3 1.278E+6 0.39
300 1.861E+6 1.935E+67.76E+2 1.937E+6 111 1.893E+62.77E+3 1.898E+6 0.87
400 2.415E+6 2.549E+61.02E+3 2.550E+6 221 2.480E+62.20E+3 2.485E+6 1.46
500 3.062E+6 3.196E+69.63+E3 3.201E+6 324 3.118E+63.55E+3 3.124E+6 2.26
1000 6.023E+6 6.298E+62.36E+4 6.335E+6 327 6.202E+64.81E+3 6.210E+6 9.43

TDA 10k TDA 200k
n avgstdev max time avgstdev max time Ploss Pgain

10 7.305E+41.73E+1 7.308E+4 0.01 7.309E+42.47E+1 7.314E+4 0.22 0.1% 100.0%
20 1.448E+57.05E−1 1.448E+5 0.02 1.448E+51.30E+1 1.449E+5 0.50 1.0% 98.1%
30 2.123E+53.74E+2 2.131E+5 0.04 2.135E+54.08E+2 2.144E+5 0.75 2.7% 92.2%
40 2.772E+54.46E+2 2.781E+5 0.05 2.791E+55.75E+2 2.806E+5 1.02 4.6% 88.7%
50 3.392E+54.61E+2 3.401E+5 0.06 3.412E+53.42E+2 3.418E+5 1.29 6.7% 84.8%
60 3.980E+55.25E+2 3.991E+5 0.08 4.011E+55.25E+2 4.022E+5 1.58 8.6% 80.4%
70 4.512E+51.19E+3 4.537E+5 0.09 4.555E+51.57E+3 4.591E+5 1.86 11.1% 72.8%
80 5.044E+51.15E+3 5.083E+5 0.11 5.090E+51.01E+3 5.108E+5 2.15 13.0% 72.8%
90 5.548E+51.34E+3 5.569E+5 0.12 5.609E+59.38E+2 5.625E+5 2.52 14.8% 68.9%
100 6.015E+51.32E+3 6.041E+5 0.14 6.083E+51.28E+3 6.113E+5 2.83 16.9% 63.9%
200 1.309E+68.99E+2 1.311E+6 0.33 1.323E+69.16E+2 1.325E+6 6.73 9.6% 96.8%
300 1.949E+61.37E+3 1.952E+6 0.55 1.971E+69.72E+2 1.973E+6 11.3 10.2% 87.4%
400 2.553E+61.52E+3 2.557E+6 0.84 2.584E+61.12E+3 2.586E+6 17.0 11.7% 82.6%
500 3.211E+61.66E+3 3.215E+6 1.19 3.249E+61.55E+3 3.251E+6 24.5 11.2% 90.1%
1000 6.363E+62.49E+3 6.368E+6 3.69 6.449E+62.04E+3 6.454E+6 75.0 11.9% 86.2%

needs 2h for the 40 turbines scenario, while even a better gain is reached within just
three minutes by our algorithm. And for the 400 turbines, our algorithm needs less than
an hour to achieve the results for which CMA-ES* requires > 200h. If given 20 times
the number of evaluations, our algorithm is able to produce layouts that produce up to
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Figure 10.3: Performance comparison: our algorithm TDA (using 10,000 and 200,000
evaluations) versus the tuned academic CMA-ES* and the industry tool OpenWind (both
using 200,000 evaluations). Shown is the energy gain achieved over the initial layout, and the
standard deviation over the 30 repetitions.

1.4% more energy than the CMA-ES* based algorithm from Chapter 9. In addition,
it is significantly faster.

Independent of the scenario, OpenWind’s optimiser achieves an average improve-
ment over the initial layouts of only 2%. Responsible for this is most likely the lack
of self-adaptation, as the optimiser gets stuck in local optima. This happens very
quickly: typically within the first 1,000 layout assessments, which is reflected in the
short running times. Contrary to this, our TDA adapts the relocation parameters for
each turbine independently of the others. The effects of this ability to change from
exploration to exploitation and back is reflected in the large performance advantage of
TDA over OpenWind.

To the results, we added some derived statistics. Ploss = wake loss
energy captured

denotes the
average percentage of unused wind energy due to wake effects. As expected, this
loss increases for the scenarios with 10-100 turbines, as more turbines are packed into
the same area, inflicting increased wake losses. For 200-1000 turbines, this value is
relatively constant, as the chosen sizes of the farms vary such that the farms could
contain roughly 2n turbines. Pgain is the average percentage in energy gained over the
previous scenario (i.e. after increasing the number of turbines by 10, 100, or 500).
Again, the effect of the increased mutual wakes is reflected in a decreasing benefit of
adding turbines, when compared to the next smaller scenario.

10.3 A Real-World Problem: Dealing With Infeasible Ar-
eas

It must be noted that the layout of wind farms are generally unable to be denoted
simply by a rectangular area specified only by a width and height. Actual wind farms
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Figure 10.4: Demonstration of the TDA infeasible area modelling capability. The image on
the left portrays a satellite image of the Woolnorth wind farm in Tasmania, Australia [41].
The right images are examples of the the loose adaptation used in the modelling tool, and
from left to right model the scenario at 0 (252.9 MW), 5,000 (264.91 MW), and 20,000 (265.8
MW) evaluations.

may have uneven boundaries due to proximity to unstable ground, lakes, cliffs, or may
simply not have authority or ownership to build in certain locations. These and other
geographical constraints may additionally exist within the bounds of the wind farm.
Any algorithm that attempts to realistically model a wind farm must model these
constraints.

TDA has been adapted to model these infeasible areas, adding an extra constraint
to those specified in Section 8.3.2. By modelling these infeasible regions as sets of
shapes, any operation which would move a turbine into an infeasible region is corrected
in the same manner in which the proximity and farm area constraints are handled
above: when the application of the displacement vector v⃗′ (line 13 of Algorithm 10.1)
would place the turbine in an infeasible zone, the distance of v⃗′ is reduced until the
displacement is legal.

This extension has resulted in a capable wind farm modelling tool. In order to
demonstrate the ability of the algorithm to model real-world wind farms, Figure 10.4
presents both the satellite image and a loosely modelled representation of the Wool-
north wind farm in Tasmania, Australia (40.685◦S 144.717◦E). The modelled scenario
uses the 37 turbines contained in the north Woolnorth site. However this scenario is
merely a proof of concept, as it is not using the wind characteristics of Woolnorth, nor
specific internal map or terrain information of the actual site. Only the coastal details
have been represented, and the above-mentioned wind resource is used (Scenario 2 in
[51]).

As can be seen, the turbines observe the constraints of the problem and are quickly
distributed into a superior formation from evaluation 0 through to evaluation 20,000.
As the wind is predominantly from the western direction (between 120◦ to 225◦), the
turbines tend to form in staggered north/south columns while leaving space along the
east/west directions.
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10.4 Conclusion

In this chapter, we have presented a fast and efficient algorithm for the layout op-
timisation of large wind farms. It takes problem-specific features into account, and
benefits from the achieved reduced computational complexity of a layout evaluation
when considering the Park wake model. As a result, our algorithm achieves higher
quality results than existing approaches, while the assessment speed-up allows for an
optimisation within minutes or hours instead of days or weeks (effective speed-up fac-
tors of up to 270 were observed).

Although we considered one specific wake model, namely the Park wake model, it is
important to note that our optimisation algorithm can be easily applied to other wake
models such as the deep array wake model [6].

Potential future work includes the following:
Multiple objectives: So far, our focus was on the optimisation of a single objective,
namely the energy output. A natural next step is to extend the optimisation process
by incorporating additional objectives, such as minimising the required amount of land
and minimising the connecting cables’ lengths. These objectives are often in conflict
with each other so the goal of solving a such a multi-objective optimisation problem is
usually to find a set of compromise solutions.
Parallelization: A rather natural step on the algorithmic side is the parallelisation
of the fitness evaluations. As the quality assessments can be carried out in parallel, we
plan to make use of current multi-core computing machines in order to further increase
the algorithm’s speed.
Realistic models: Furthermore, we plan to investigate other wake models, such as the
computationally expensive deep array wake model. Potentially, significant speed-ups
can be achieved there as well by using our approach of updates. This could then make
the use of wake models computationally tractable, without the need for specialised
computing servers.

This work has been published in the Renewable Energy Journal in 2013 [90].
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Part IV

Summary and Future Work
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Prediction is very difficult, especially if it’s about
the future.

Niels Bohr

Summary and Future Work

Our journey on the theory and applications of bio-inspired algorithms covered theo-
retical investigations in Part I, theory-motivated algorithm engineering in Part II, and
the application of algorithms to real-world problems in Part III.

With Part I of this thesis, we contribute to the understanding of variable-length
algorithms with our theoretical and experimental investigations. We show that parsi-
monious and multi-objective approaches can help algorithms to solve problems that are
otherwise unsolvable. Several novel upper bounds for our studied single- and multi-
objective scenario from Chapter 4 have recently been proved by Nguyen et al. [67].
The previously best bounds presented in [29, 62] typically depend on two measures,
the maximum tree size and the maximum population size, that arise during the opti-
misation run. In several cases, Nguyen et al. [67] are able to bound both measures.
In order to narrow the gap between theory and application over the next couple of
years, the investigated problems need to resemble real-world problems more closely.
Recently, we have taken the first steps in this direction by starting the analysis of
variable-length algorithms when they are used for symbolic regression, which is one of
the uses of genetic programming.

As we have seen in our theoretical and experimental analyses, the multi-objective op-
timisation approaches were amongst the most successful ones. In Part II of this thesis,
we presented a multi-objective optimisation algorithm whose design is motivated by
existing theoretical investigations. The resulting framework for approximation-guided
evolutionary algorithms (AGEs) works with a formal notion of approximation and has
the ability to work with problems of many dimensions. Our new approximation-guided
algorithm called AGE-II efficiently solves problems with few and with many conflicting
objectives. The experimental results show that given a fixed time budget AGE-II out-
performs state-of-the-art approaches in terms of the desired additive approximation on
standard benchmark functions for more than four objectives. On functions with two
and three objectives, it lies level with the best approaches. As proven, its computation
time increases only linearly with the number of objectives. This enables practitioners
now to add objectives with only minor consequences, and to explore problems for even
higher dimensions.

125



Real-world problems are often not only characterised by several objectives, but they
also require that the solutions satisfy constraints as well. In addition, the evaluations
can be computationally costly. In Part III, we have seen that the single-objective
yield optimisation of wind turbine placements on a given area of land is a challeng-
ing optimisation problem. This is due to the considered constraints and due to the
necessary evaluation efforts. However, with our results in mind, we can consider this
problem solved. The next logical step is to tackle the multi-objective variant of this
problem. Based on our knowledge gained from tackling the single-objective problem,
Tran et al. [81] have already extended our work. They consider the wake effects that
are produced by the different turbines on the wind farm, while optimising the energy
yield, the necessary area, and the cable length needed to connect all turbines. Tran
et al. [81] use amongst others our TDA and our caching-technique to speed-up the
computation time. The resulting approach allows the multi-objective optimisation of
large real-world scenarios within a single night on a standard computer.
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